scholarly journals Instantly Decodable RaptorQ Intersessions in Vehicular Adhoc Networks

2020 ◽  
Vol 21 (2) ◽  
pp. 134-148
Author(s):  
Nandhini Vineeth ◽  
H. S. Guruprasad

AbstractVehicular networks that deal with sharing of information among vehicles are gaining popularity among the automobile industry as well as the researchers. These networks are prevalent under the umbrella of Intelligent Transportation Systems (ITS) and deal with data that belongs to either the emergency category or the entertaining category. In case of emergency services, it is clear that - earlier the reception of information, lesser the commotion. The objective of this work thus has been the reduction of the end to end delay when video files are exchanged among vehicles during intersessions. The set objective is accomplished through the design and development of the technique “Instantly Decodable RaptorQ Inter-Sessions” (IDRQIS) for Vehicular Adhoc Networks and the results obtained show that this outperforms the existing popular techniques – the Network Coding and RaptorQ when applied independently to the same environment. This technique can also be applied to the upcoming unmanned vehicles.

Author(s):  
Felipe Cunha ◽  
Guilherme Maia ◽  
Heitor S. Ramos ◽  
Bruno Perreira ◽  
Clayson Celes ◽  
...  

2007 ◽  
Vol 13 (3) ◽  
pp. 627-636
Author(s):  
Edna Mrnjavac ◽  
Robert Marsanić

The rapid growth and development of motorisation combined with relatively small investments made to improving transportation infrastructure in cities, as well as in tourism destinations, has led to serious problems in the unobstructed movement of vehicles in public traffic areas. Traffic congestion on roadways, in ferryboat ports and at state borders during the summer months and year-round lines of cars going to or returning from work are a regular presence in traffic in most urban and tourism destinations in Croatia, as well as in the rest of Europe. Intelligent transportation systems (ITS) can be implemented in urban and tourism centres, which, for example, have no opportunity for increasing the capacity of their traffic networks by constructing new, or expanding existing, transportation infrastructure, and no opportunity for increasing parking capacities. The only solution would be to optimise traffic networking by introducing intelligent technologies. Intelligent transportation systems and services represent a coupling of information and telecommunication technologies with transportation means and infrastructure to ensure greater efficiency in the mobility of people and goods. ITS implementation helps to provide better information to motorists and travellers (tourists); improve traffic and tourist flows, cargo transportation, public passenger-transportation; facilitate the work of emergency services; enable electronic traffic-related payments; enhance the security of people in road traffic; and monitor weather conditions and the environment. To motorists the system provides guidance to roads on which traffic is less intense, guidance to available parking spaces, and guidance, for example, to a good restaurant or interesting tourist attraction. his paper focuses, in particular, on ITS application in city and tourism destinations in connection with parking problems. Guiding vehicles to the closest vacant parking space helps to reduce traffic congestion, reduce the amount of time lost in searching and increase the occupancy rate of car-parks


2018 ◽  
Vol 22 (2) ◽  
pp. 120-128
Author(s):  
Rohmah Nur Hidayah ◽  
Indrabayu Indrabayu ◽  
Intan Sari Areni

Intelligent Transportation Systems (ITS) menawarkan paradigma pemodelan baru yang mendukung komunikasi antar kendaraan secara real time menggunakan routing protocol yang disebut Vehicular Ad Hoc Network (VANET). Pada dasarnya kinerja routing protocol dipengaruhi oleh arus dan aturan lalu lintas yang bersifat dinamis sehingga perubahan tersebut akan menyebabkan perubahan pada kinerja routing protocol juga. Untuk itu, penelitian ini mengusulkan rancangan mobilitas realistis berdasarkan data makroskopis dan mikroskopis jalan perkotaan. Rancangan mobilitas dibagi menjadi 2 skenario berdasarkan kepadatan kendaraan, yaitu 125 dan 200 node. Penelitian ini bersifat simulasi dan dibagi menjadi 2 tahap. Tahap pertama yaitu simulasi mobilitas yang menunjukkan pergerakan kendaraan serta aturan lalu lintas yang disesuaikan dengan kondisi realistis. Tahap kedua adalah simulasi jaringan yang bertujuan untuk mengevaluasi kinerja routing protocol DSDV dan OLSR terhadap rancangan model mobilitas. Untuk menguji kinerja kedua  routing protocol, maka digunakan 3 metrik pengujian yaitu Packet Delivery Ratio (PDR), Overhead Ratio (OR) dan End to End Delay (E2ED). Hasil simulasi menunjukkan OLSR unggul pada metrik PDR dan OR, yaitu masing-masing 88.62% dan 57.11%. Sedangkan E2ED terbaik ditunjukkan oleh DSDV dengan nilai 0.523 detik. Kinerja terbaik kedua routing protocol ditunjukkan pada skenario 125 node. Hal ini menunjukkan kedua routing protocol belum mampu mengatasi kondisi lalu lintas perkotaan yang sangat padat.


2020 ◽  
Vol 12 (4) ◽  
pp. 63
Author(s):  
Nishu Gupta ◽  
Ravikanti Manaswini ◽  
Bongaram Saikrishna ◽  
Francisco Silva ◽  
Ariel Teles

The amalgamation of Vehicular Ad hoc Network (VANET) with the Internet of Things (IoT) leads to the concept of the Internet of Vehicles (IoV). IoV forms a solid backbone for Intelligent Transportation Systems (ITS), which paves the way for technologies that better explain about traffic efficiency and their management applications. IoV architecture is seen as a big player in different areas such as the automobile industry, research organizations, smart cities and intelligent transportation for various commercial and scientific applications. However, as VANET is vulnerable to various types of security attacks, the IoV structure should ensure security and efficient performance for vehicular communications. To address these issues, in this article, an authentication-based protocol (A-MAC) for smart vehicular communication is proposed along with a novel framework towards an IoV architecture model. The scheme requires hash operations and uses cryptographic concepts to transfer messages between vehicles to maintain the required security. Performance evaluation helps analyzing its strength in withstanding various types of security attacks. Simulation results demonstrate that A-MAC outshines other protocols in terms of communication cost, execution time, storage cost, and overhead.


2014 ◽  
Vol 945-949 ◽  
pp. 1789-1793 ◽  
Author(s):  
Wen Qian An ◽  
Xu Fang Bo ◽  
Chao Jia

With the rapid development of China's automobile industry, intelligent transportation systems have become an important means of modern traffic management. The paper analyzes the prospects for detection of several sports: frame difference method, optical flow method and the background model, and compared the effects of several methods of detection, using a strong adaptability to disturbance Gaussian mixture background model to detect moving targets. Then the detected motion foreground image OTSU threshold, using morphological methods de-noising and holes filled, get a complete moving target. In this paper, the characteristics of the target shadow and existing methods are analyzed, using a shadow removal method based on color features.


Author(s):  
Rinki Sharma

Vehicular communication is going to play a significant role in the future intelligent transportation systems (ITS). Due to the highly dynamic nature of vehicular networks (VNs) and need for efficient real-time communication, the traditional networking paradigm is not suitable for VNs. Incorporating the SDN technology in VNs provides benefits in network programmability, heterogeneity, connectivity, resource utility, safety and security, routing, and traffic management. However, there are still several challenges and open research issues due to network dynamicity, scalability, heterogeneity, interference, latency, and security that need to be addressed. This chapter presents the importance of vehicular communication in future ITS, the significance of incorporating the SDN paradigm in VNs, taxonomy for the role of SDVN, the software-defined vehicular network (SDVN) architecture, and open research issues in SDVN.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Ahmer Khan Jadoon ◽  
Licheng Wang ◽  
Tong Li ◽  
Muhammad Azam Zia

A new integration of wireless communication technologies into the automobile industry has instigated a momentous research interest in the field of Vehicular Ad Hoc Network (VANET) security. Intelligent Transportation Systems (ITS) are set up, aiming to offer promising applications for efficient and safe communication for future automotive technology. Vehicular networks are unique in terms of characteristics, challenges, architecture, and applications. Consequently, security requirements related to vehicular networks are more complex as compared to mobile networks and conventional wireless networks. This article presents a survey about developments in vehicular networks from the perspective of lightweight cryptographic protocols and privacy preserving algorithms. Unique characteristics of vehicular networks are presented which make the embedded security applications computationally hard as well as memory constrained. The current study also deals with the fundamental security requirements, essential for vehicular communication. Furthermore, awareness of security threats and their cryptographic solutions in terms of future automotive industry are discussed. In addition, asymmetric, symmetric, and lightweight cryptographic solutions are summarized. These strategies can be enhanced or incorporated all in all to meet the security perquisites of future cars security.


Sign in / Sign up

Export Citation Format

Share Document