scholarly journals Higher Order Oscillation and Uniform Distribution

2019 ◽  
Vol 14 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Shigeki Akiyama ◽  
Yunping Jiang

AbstractIt is known that the Möbius function in number theory is higher order oscillating. In this paper we show that there is another kind of higher order oscillating sequences in the form (e2πiαβn g(β))n∈𝕅, for a non-decreasing twice differentiable function g with a mild condition. This follows the result we prove in this paper that for a fixed non-zero real number α and almost all real numbers β> 1 (alternatively, for a fixed real number β> 1 and almost all real numbers α) and for all real polynomials Q(x), sequences (αβng(β)+ Q(n)) n∈𝕅 are uniformly distributed modulo 1.

1951 ◽  
Vol 16 (2) ◽  
pp. 130-136 ◽  
Author(s):  
John Myhill

In a previous paper, I proved the consistency of a non-finitary system of logic based on the theory of types, which was shown to contain the axiom of reducibility in a form which seemed not to interfere with the classical construction of real numbers. A form of the system containing a strong axiom of choice was also proved consistent.It seems to me now that the real-number approach used in that paper, though valid, was not the most fruitful one. We can, on the lines therein suggested, prove the consistency of axioms closely resembling Tarski's twenty axioms for the real numbers; but this, from the standpoint of mathematical practice, is a pitifully small fragment of analysis. The consistency of a fairly strong set-theory can be proved, using the results of my previous paper, with little more difficulty than that of the Tarski axioms; this being the case, it would seem a saving in effort to derive the consistency of such a theory first, then to strengthen that theory (if possible) in such ways as can be shown to preserve consistency; and finally to derive from the system thus strengthened, if need be, a more usable real-number theory. The present paper is meant to achieve the first part of this program. The paragraphs of this paper are numbered consecutively with those of my previous paper, of which it is to be regarded as a continuation.


Fractals ◽  
2018 ◽  
Vol 26 (05) ◽  
pp. 1850074 ◽  
Author(s):  
MENGJIE ZHANG

For any real number [Formula: see text], and any [Formula: see text], let [Formula: see text] be the maximal length of consecutive zeros in the first [Formula: see text] digits of the [Formula: see text]-expansion of [Formula: see text]. Recently, Tong, Yu and Zhao [On the length of consecutive zero digits of [Formula: see text]-expansions, Int. J. Number Theory 12 (2016) 625–633] proved that for any [Formula: see text], for Lebesgue almost all [Formula: see text], [Formula: see text] In this paper, we quantify the size of the set of [Formula: see text] for which [Formula: see text] grows to infinity in a general speed. More precisely, for any increasing function [Formula: see text] with [Formula: see text] tending to [Formula: see text] and [Formula: see text], we show that for any [Formula: see text], the set [Formula: see text] has full Hausdorff dimension.


2014 ◽  
Vol 59 (1) ◽  
pp. 51-64
Author(s):  
Kwo Chan ◽  
Radhakrishnan Nair

Abstract In 1923 A. Khinchin asked if given any B ⊆ [0, 1) of positive Lebesgue measure, we have #{n : 1 ≤ n ≤ N : {nx} ∈ B} → |B| for almost all x with respect to Lebesgue measure. Here {y} denotes the fractional part of the real number y and |A| denotes the Lebesgue measure of the set A in [0, 1). In 1970 J. Marstrand showed the answer is no. In this paper the authors survey contributions to this subject since then.


10.37236/828 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Sujith Vijay

A quasi-progression, also known as a Beatty sequence, consists of successive multiples of a real number, with each multiple rounded down to the largest integer not exceeding it. In 1986, Beck showed that given any $2$-colouring, the hypergraph of quasi-progressions contained in $\{0,1,\ldots,n \}$ corresponding to almost all real numbers in $(1, \infty)$ have discrepancy at least $\log^{*} n$, the inverse of the tower function. We improve the lower bound to $(\log n)^{1/4 - o(1)}$, and also show that there is some quasi-progression with discrepancy at least $(1/50) n^{1/6}$. The results remain valid even if the $2$-colouring is replaced by a partial colouring of positive density.


2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.


2021 ◽  
Vol 182 (2) ◽  
Author(s):  
Philip Kennerberg ◽  
Stanislav Volkov

AbstractWe study the behaviour of an interacting particle system, related to the Bak–Sneppen model and Jante’s law process defined in Kennerberg and Volkov (Adv Appl Probab 50:414–439, 2018). Let $$N\ge 3$$ N ≥ 3 vertices be placed on a circle, such that each vertex has exactly two neighbours. To each vertex assign a real number, called fitness (we use this term, as it is quite standard for Bak–Sneppen models). Now find the vertex which fitness deviates most from the average of the fitnesses of its two immediate neighbours (in case of a tie, draw uniformly among such vertices), and replace it by a random value drawn independently according to some distribution $$\zeta $$ ζ . We show that in case where $$\zeta $$ ζ is a finitely supported or continuous uniform distribution, all the fitnesses except one converge to the same value.


2018 ◽  
Vol 7 (1) ◽  
pp. 77-83
Author(s):  
Rajendra Prasad Regmi

There are various methods of finding the square roots of positive real number. This paper deals with finding the principle square root of positive real numbers by using Lagrange’s and Newton’s interpolation method. The interpolation method is the process of finding the values of unknown quantity (y) between two known quantities.


1994 ◽  
Vol 3 (4) ◽  
pp. 435-454 ◽  
Author(s):  
Neal Brand ◽  
Steve Jackson

In [11] it is shown that the theory of almost all graphs is first-order complete. Furthermore, in [3] a collection of first-order axioms are given from which any first-order property or its negation can be deduced. Here we show that almost all Steinhaus graphs satisfy the axioms of almost all graphs and conclude that a first-order property is true for almost all graphs if and only if it is true for almost all Steinhaus graphs. We also show that certain classes of subgraphs of vertex transitive graphs are first-order complete. Finally, we give a new class of higher-order axioms from which it follows that large subgraphs of specified type exist in almost all graphs.


2009 ◽  
Vol 93 (528) ◽  
pp. 468-475
Author(s):  
Graham Hoare

The German version of Riemann’s Collected Works is confined to a single volume of 690 pages. Even so, this volume has had an abiding and profound impact on modern mathematics and physics, as we shall see. In fifteen years of activity, from 1851, when he gained his doctorate at the University of Göttingen, to his death in 1866, two months short of his fortieth birthday, Riemann contributed to almost all areas of mathematics. He perceived mathematics from the analytic point of view and used analysis to illuminate subjects as diverse as number theory and geometry. Although regarded principally as a mathematician Riemann had an abiding interest in physics and researched significantly in the methods of mathematical physics, particularly in the area of partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document