Control and modulation methods of voltage source converter

2009 ◽  
Vol 57 (4) ◽  
pp. 323-336
Author(s):  
G. Radomski

Control and modulation methods of voltage source converterControl and modulation methods of Voltage Source Converter (VSC) have been presented in the paper. Model of VSC with three value transistor branch state function is introduced to describe operation of VSC. Predictive-corrective control method of VSC system is presented. Two variants of Space Vector PWM methods for VSC system are developed. Algorithm of cancelation of negative influence of dead time on the AC voltages is implemented in the proposed modulation methods. Correctness of introduced method is validated by simulation and experiment investigations.

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2195
Author(s):  
Jin-Wook Kang ◽  
Seung-Wook Hyun ◽  
Yong Kan ◽  
Hoon Lee ◽  
Jung-Hyo Lee

This paper proposes a novel pulse width modulation (PWM) for a three-level neutral point clamped (NPC) voltage source inverter (VSI). When the conventional PWM method is used in three-level NPC VSI, dead time is required to prevent a short circuit caused by the operation of complementary devices on the upper and lower arms. However, current distortion is increased because of the dead time and it can also cause a voltage unbalance in the dc-link. To solve this problem, we propose a zero dead-time width modulation (ZDPWM) which does not require dead time used in complementary operation. The proposed technique applies the offset voltage to the space vector pulse width modulation (SVPWM) reference voltage for the same modulation index (MI) as the conventional SVPWM, but any complementary switching operation needs dead time. In addition, the proposed method is divided into four operation sections using the reference voltage and phase current to operate switching devices which flow the current depending on the section. This ZDPWM method is simply implemented by carrier and reference voltage that reduce the current distortion, because complementary operation that needs dead time is not implemented. However, the operation section is delayed due to the sampling delay that occurs during the experiment. Therefore, in this paper, we conduct a modeling of sampling delay to improve the delay of operation section. To verify the principle and feasibility of the proposed ZDPWM method, a simulation and experiment are implemented.


Author(s):  
Prabodha Kumar Rath ◽  
Kanhu Charan Bhuyan

<span lang="EN-US">This paper proposes a model of a VSC (voltage source converter) based Back to Back HVDC system and its control technique under fault condition. From the mathematical model of the system relationship between the controlling and the controlled variables is determined to control the system parameters. An appropriate vector control technique is used to control active and reactive power and to maintain DC link voltage. The proposed controlling unit consists of outer control loop and inner control loop which effectively damped out the system oscillation and maintains the system stability. The validity of the model and the feasibility of the control method have been proved by the simulation results. In this paper the system performance is studied under fault condition is studied.</span>


2014 ◽  
Vol 626 ◽  
pp. 184-189
Author(s):  
A.S. Monikandan ◽  
N. Kesavan Nair

The Interline Power Flow Controller (IPFC) is a voltage-source-converter (VSC)-based flexible ac transmission system (FACTS) controller for series compensation in a multiline transmission system of a substation. The capability of injecting series voltages with controllable magnitude and phase angle makes it a powerful tool for better utilization of existing transmission lines in a multiline transmission system. IPFC is used to regulate active and reactive power flow in a multiline system, usually. In this paper, a control method for IPFC is proposed to control magnitude and phase angle of one sending bus of a substation. All degrees of freedom of IPFC and decoupled synchronous frame concept are used in the proposed control structure. Simulation results in Matlab/Simulink are presented to show the capability of IPFC in compensating the bus voltage.


Computation ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 134
Author(s):  
Lorena Castro ◽  
Maximiliano Bueno-López ◽  
Juan Mora-Flórez

The modern changes in electric systems present new issues for control strategies. When power converters and distributed energy resources are included in the micro-grid, its model is more complex than the simplified representations used, sometimes losing essential data. This paper proposes a unified fuzzy mathematics-based control method applied to the outer loop of a voltage source converter (VSC) in both grid-connected and islanded modes to avoid using simplified models in complex micro-grids and handle the uncertain and non-stationary behaviour of nonlinear systems. The proposed control method is straightforwardly designed without simplifying the controlled system. This paper explains the design of a fuzzy mathematics-based control method applied to the outer-loop of a VSC, a crucial device for integrating renewable sources and storage devices in a micro-grid. Simulation results validated the novel control strategy, demonstrating its capabilities for real field applications.


Sign in / Sign up

Export Citation Format

Share Document