scholarly journals Reconstruction of the Switched Reluctance Motor Stator

2012 ◽  
Vol 63 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Eyhab El-Kharashi ◽  
Hany Hassanien

Reconstruction of the Switched Reluctance Motor Stator The paper re-designs the conventional 6/8 switched reluctance motor (SRM) by a particular way to minimize the losses. The flux loops are shortened by making each two stator teeth incorporated in one magnetic circuit only. Subsequently the flux does not cross in some iron parts of the stator core backs. These unused iron sections are taken off consequently the iron losses decreased. Now the stator consists of three separated sections and they are fixed inside non-magnetic cylinder. The copper losses also are decreased because less copper windings are used to produce the same amount of the output torque as the flux paths become short then the flux density increases. The analysis and comparison of the 6/8 SRM before and after the re-design process are presented. A m files Matlab software is used to simulate the dynamic performance. Then the paper proceeds to examine different control techniques to the new design. The hysteresis and PI controllers are used as classical method to control the SRM. Then the artificial neural network (ANN) is used to test the new control techniques.

2014 ◽  
Vol 532 ◽  
pp. 26-30
Author(s):  
Yue Ying Zhu ◽  
Jiang Feng Mou

The power performance of the Switched Reluctance Motor (SRM) drive used in electric vehicles is very important for improving the dynamic performance of the vehicle and matching the parameters of the vehicle power train. In order to analyses the drive performance of the SRM drive under the electric vehicle, the nonlinear dynamic model of the SRM drive is established in the MATLAB/Simulink environment. Then the vehicle dynamic load model is designed to connect with the SRM drive model, and the performance analysis of the SRM used in the developing electric vehicle is carried out based on power output and equivalent power factor. The analysis results are significant for the design and improvement of the electric vehicle.


Author(s):  
Ashok Kumar Kolluru ◽  
Malligunta Kiran Kumar

<p>The best alternative machine for synchronous and induction machine is switched reluctance machine for various applications. An artificial neural network (ANN) based vector controller is implemented for novel converter to drive switched reluctance motor (SRM) in this paper. To reduce the cost and simplified the controller an effective configuration of converter is proposed with only 4 pulse-withmodulation (PWM) based switches. The 6 pole stator and 4 pole rotor machine is considered in this paper to present results based on MATLAB. The ripples in torque are reduced by proposing vector controller by using novel configuration of converter. Generally SRM machines are having high ripples in torque, hence less number of switches will be feasible solution to drive the machine in order to reduce ripples. The proposed controller can also help to operate system with less ripples in torque since the controller having both torque and flux hysteresis controllers. The extensive results are presented on Simulink platform to validate the proposed method under both steady state as well as transient conditions.</p>


2011 ◽  
Vol 383-390 ◽  
pp. 1921-1925
Author(s):  
Zhi Gang Wang ◽  
Ping Tan ◽  
Sui Chun Qu

The transverse flux switched reluctance motor (TFSRM) has the advantage of switched reluctance motors and transverse flux motor. This paper examines the effects of the main dimensions such as the polar distance, the stator core, the length of air gap ,etc, on the performance.


Sign in / Sign up

Export Citation Format

Share Document