Network anomaly detection based on signal processing techniques

2013 ◽  
Vol 18 (1) ◽  
pp. 15-21
Author(s):  
Tomasz Andrysiak ◽  
Łukasz Saganowski ◽  
Mirosław Maszewski

Abstract The article depicts possibility of using Matching Pursuit decomposition in order to recognize unspecified hazards in network traffic. Furthermore, the work aims to present feasible enhancements to the anomaly detection method, as well as their efficiency on the basis of a wide collection of pattern test traces.

Author(s):  
Rolands Kromanis ◽  
Prakash Kripakaran

Abstract This study investigates the effectiveness of four signal processing techniques in supporting a data-driven strategy for anomaly detection that relies on correlations between measurements of bridge response and temperature distributions. The strategy builds upon the regression-based thermal response prediction methodology which was developed by the authors to accurately predict thermal response from distributed temperature measurements. The four techniques that are investigated as part of the strategy are moving fast Fourier transform, moving principal component analysis, signal subtraction method and cointegration method. The techniques are compared on measurement time histories from a laboratory structure and a footbridge at the National Physical Laboratory. Results demonstrate that anomaly events can be detected successfully depending on the magnitude and duration of the event and the choice of an appropriate anomaly detection technique.


2017 ◽  
Author(s):  
Sujeet Patole ◽  
Murat Torlak ◽  
Dan Wang ◽  
Murtaza Ali

Automotive radars, along with other sensors such as lidar, (which stands for “light detection and ranging”), ultrasound, and cameras, form the backbone of self-driving cars and advanced driver assistant systems (ADASs). These technological advancements are enabled by extremely complex systems with a long signal processing path from radars/sensors to the controller. Automotive radar systems are responsible for the detection of objects and obstacles, their position, and speed relative to the vehicle. The development of signal processing techniques along with progress in the millimeter- wave (mm-wave) semiconductor technology plays a key role in automotive radar systems. Various signal processing techniques have been developed to provide better resolution and estimation performance in all measurement dimensions: range, azimuth-elevation angles, and velocity of the targets surrounding the vehicles. This article summarizes various aspects of automotive radar signal processing techniques, including waveform design, possible radar architectures, estimation algorithms, implementation complexity-resolution trade-off, and adaptive processing for complex environments, as well as unique problems associated with automotive radars such as pedestrian detection. We believe that this review article will combine the several contributions scattered in the literature to serve as a primary starting point to new researchers and to give a bird’s-eye view to the existing research community.


Sign in / Sign up

Export Citation Format

Share Document