scholarly journals Analytical Solutions and Procedures for Evaluation of CO2 Mass Transfer Coefficients of the CO2 Boundary Layer and the Aerenchyma Tissue of the Crop Leaf in Photosynthesis.

2000 ◽  
Vol 56 (3) ◽  
pp. 181-193
Author(s):  
Tomoaki KOMORI ◽  
Ryoko IKEMOTO
1984 ◽  
Vol 19 (3) ◽  
pp. 289-308 ◽  
Author(s):  
G.L. Flynn ◽  
A.B. French ◽  
N.F.H. Ho ◽  
W.I. Higuchi ◽  
E.A. Ostafin ◽  
...  

Author(s):  
Masanori Naitoh ◽  
Shunsuke Uchida ◽  
Hidetoshi Okada ◽  
Seiichi Koshizuka

The code system DRAWTHREE-FAC for evaluation of pipe wall thinning due to flow accelerated corrosion was validated by comparison of calculations with measurements at the secondary piping of a PWR plant. Distributions of flow velocity and temperature along the whole piping were calculated with the system code RELAP5 and corrosive conditions were calculated by a N2H4-O2 reaction analysis code. Precise flow turbulence at major parts of the piping was analyzed with a 3D computational fluid dynamics (CFD) code to obtain mass transfer coefficients at structure surfaces. In the CFD calculation, the κ-ε method was applied. Since the κ-ε method can not give detailed flow behavior in a boundary layer, the results were extrapolated with a wall function, a power law, and analogy of non-dimensional numbers to obtain mass transfer coefficients in the boundary layer. Then, wall thinning rates were calculated by coupling models of static electrochemical and dynamic oxide layer growth. The wall thinning calculation was focused on T-junction portions of a PWR feed water line. The wall thickness of the PWR secondary piping was measured by the ultrasonic testing. The calculated residual wall thicknesses after thinning agreed with the measurements within ±20% difference.


Author(s):  
W. P. Webster ◽  
S. Yavuzkurt

Mass transfer coefficients and the film cooling effectiveness are measured downstream of a single row of holes inclined 30 degrees with the surface and inline with the main turbulent boundary layer flow. The mass transfer coefficients (based on the difference between the free stream and the surface concentrations) are measured using a naphthalene sublimation technique. The effectiveness is determined through the injection of a trace gas into the secondary (cooling jets) flow and measuring its concentration at the impermeable wall. Experiments are carried out in a subsonic, zero pressure gradient turbulent boundary layer, under isothermal conditions with three blowing ratios (Uj/U∞): 0.4, 0.8, and 1.2. The data is collected in a region 7 to 80 jet diameters downstream of the injection location. From the data on mass transfer coefficients and effectiveness obtained under the same flow conditions a general mass transfer equation is derived. This paper presents extensive data and discussions; and is believed to be one of the few studies in which both of these variables are measured on the same surface and in a large area in the recovery region.


2010 ◽  
Vol 132 (12) ◽  
Author(s):  
A. Alper Ozalp ◽  
Ibrahim Dincer

This paper presents a comprehensive computational work on the hydrodynamic, thermal, and mass transfer characteristics of a circular cylinder, subjected to confined flow at the cylinder Reynolds number of Red=40. As the two-dimensional, steady and incompressible momentum and energy equations are solved using ANSYS-CFX (version 11.0), the moisture distributions are computed by a new alternating direction implicit method based software. The significant results, highlighting the influence of blockage (β=0.200–0.800) on the flow and heat transfer mechanism and clarifying the combined roles of β and moisture diffusivity (D=1×10−8–1×10−5 m2/s) on the mass transfer behavior, are obtained for practical applications. It is shown that the blockage augments the friction coefficients (Cf) and Nusselt numbers (Nu) on the complete cylinder surface, where the average Nu are evaluated as Nuave=3.66, 4.05, 4.97, and 6.51 for β=0.200, 0.333, 0.571, and 0.800. Moreover, the blockage shifts separation (θs) and maximum Cf locations (θCf−max) downstream to the positions of θs=54.10, 50.20, 41.98, and 37.30 deg and θCf−max=51.5, 53.4, 74.9, and 85.4 deg. The highest blockage of β=0.800 encourages the downstream backward velocity values, which as a consequence disturbs the boundary layer and weakens the fluid-solid contact. The center and average moisture contents differ significantly at the beginning of drying process, but in the last 5% of the drying period they vary only by 1.6%. Additionally, higher blockage augments mass transfer coefficients (hm) on the overall cylinder surface; however, the growing rate of back face mass transfer coefficients (hm−bf) is dominant to that of the front face values (hm−ff), with the interpreting ratios of h¯m−bf/h¯m=0.50 and 0.57 and h¯m−ff/h¯m=1.50 and 1.43 for β=0.200 and 0.800.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 139-147 ◽  
Author(s):  
Harald Horn ◽  
Dietmar C. Hempel

The use of microelectrodes in biofilm research allows a better understanding of intrinsic biofilm processes. Little is known about mass transfer and substrate utilization in the boundary layer of biofilm systems. One possible description of mass transfer can be obtained by mass transfer coefficients, both on the basis of the stagnant film theory or with the Sherwood number. This approach is rather formal and not quite correct when the heterogeneity of the biofilm surface structure is taken into account. It could be shown that substrate loading is a major factor in the description of the development of the density. On the other hand, the time axis is an important factor which has to be considered when concentration profiles in biofilm systems are discussed. Finally, hydrodynamic conditions become important for the development of the biofilm surface when the Reynolds number increases above the range of 3000-4000.


Sign in / Sign up

Export Citation Format

Share Document