scholarly journals "Click" chemistry as a tool to create novel biomaterials: a short review

2015 ◽  
Vol 1 (1) ◽  
pp. 22-34 ◽  
Author(s):  
Mariana Barbosa ◽  
Cristina Martins ◽  
Paula Gomes

In recent years, there has been a growing demand for novel strategies for biomedical applications. Chitosan is a typical cationic amino-containing polysaccharide that has been widely used due to its unique properties. The grafting modification of chitosan has been explored as an interesting method to develop multifunctional novel chitosan hybrid materials for drug delivery, tissue engineering, and other biomedical applications. Recently, “click” chemistry has been introduced into the synthesis of polymeric materials with well-defined and complex chain architectures. The Huisgen’s 1,3-dipolar cycloaddition reaction between alkynes and azides yielding triazoles is the principal example of a “click” reaction. Bioconjugation, surface modification, and orthogonal functionalization of polymers were successfully performed through this chemoselective reaction. In recent literature interest has been shown in this cycloaddition for the modification of polysaccharides, however, only a few chitosan graft copolymers have been synthesized by this technique.

2017 ◽  
Vol 1 (1) ◽  
pp. 22-34
Author(s):  
Mariana Barbosa ◽  
Cristina Martins ◽  
Paula Gomes

In recent years, there has been a growing demand for novel strategies for biomedical applications. Chitosan is a typical cationic amino-containing polysaccharide that has been widely used due to its unique properties. The grafting modification of chitosan has been explored as an interesting method to develop multifunctional novel chitosan hybrid materials for drug delivery, tissue engineering, and other biomedical applications. Recently, “click” chemistry has been introduced into the synthesis of polymeric materials with well-defined and complex chain architectures. The Huisgen’s 1,3-dipolar cycloaddition reaction between alkynes and azides yielding triazoles is the principal example of a “click” reaction. Bioconjugation, surface modification, and orthogonal functionalization of polymers were successfully performed through this chemoselective reaction. In recent literature interest has been shown in this cycloaddition for the modification of polysaccharides, however, only a few chitosan graft copolymers have been synthesized by this technique.


RSC Advances ◽  
2016 ◽  
Vol 6 (26) ◽  
pp. 21979-22006 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Zahra Hassanzadeh ◽  
Parisa Gholamzadeh ◽  
Shima Asadi ◽  
Alireza Badiei

Click chemistry is undoubtedly the most powerful 1,3-dipolar cycloaddition reaction in organic synthesis.


2016 ◽  
Vol 3 (9) ◽  
pp. 160090 ◽  
Author(s):  
Biswadip Banerji ◽  
K. Chandrasekhar ◽  
Sunil Kumar Killi ◽  
Sumit Kumar Pramanik ◽  
Pal Uttam ◽  
...  

‘Click reactions’ are the copper catalysed dipolar cycloaddition reaction of azides and alkynes to incorporate nitrogens into a cyclic hydrocarbon scaffold forming a triazole ring. Owing to its efficiency and versatility, this reaction and the products, triazole-containing heterocycles, have immense importance in medicinal chemistry. Copper is the only known catalyst to carry out this reaction, the mechanism of which remains unclear. We report here that the ‘click reactions’ can also be catalysed by silver halides in non-aqueous medium. It constitutes an alternative to the well-known CuAAC click reaction. The yield of the reaction varies on the type of counter ion present in the silver salt. This reaction exhibits significant features, such as high regioselectivity, mild reaction conditions, easy availability of substrates and reasonably good yields. In this communication, the findings of a new catalyst along with the effect of solvent and counter ions will help to decipher the still obscure mechanism of this important reaction.


2020 ◽  
Vol 6 (21) ◽  
pp. eaaz6107 ◽  
Author(s):  
R. Tian ◽  
S.-M. Xu ◽  
Q. Xu ◽  
C. Lu

To achieve efficient polymer-based room-temperature phosphorescence (RTP) materials, covalently embedding phosphors into the polymer matrix appeared as the most appealing approach. However, it is still highly challenging to fabricate RTP materials on a large scale because of the inefficient binding engineering and time-consuming covalent reactions. Here, we have proposed a scalable preparation approach for RTP materials by the facile B─O click reaction between boronic acid–modified phosphors and polyhydroxy polymer matrix. The ab initio molecular dynamics simulations demonstrated that the phosphors were effectively immobilized, resulting in the suppressed nonradiative transitions and activated RTP emission. In comparison to the reported covalent binding time of several hours, such a B─O click reaction can be accomplished within 20 s under ambient environment. The developed strategy simplified the construction of polymer-based RTP polymeric materials by the introduction of facile click chemistry. Our success provides inspirations and possibilities for the scale-up production of RTP materials.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ch. Venkata Ramana Reddy ◽  
G. Ganga Reddy

: A series of new 2-((1-((1-(4-methoxy-3-nitrophenyl)-1H-1,2,3-triazol-4-yl)methyl)1H-indol-3-yl)me thylene)malononitrile derivatives were synthesized by the 1,3 dipolar cyclo addition reaction (click reaction) of 2-((1-(prop-2-yn-1-yl)-1H-indol-3-yl)methylene)malononitrile with different aryl azides in the presence of sodium ascorbate and copper sulphate in good yields. The advantages of this method are efficient, clean, high yields, easy workup procedures and shorter reaction time. These reactions are very facile giving products by simple processing that does not require purification by column chromatography. All the newly synthesized compounds were confirmed by spectroscopic methods.


2019 ◽  
Vol 55 (6) ◽  
pp. 731-750 ◽  
Author(s):  
Puja Saha ◽  
Deepanjan Panda ◽  
Jyotirmayee Dash

The Cu(i)-catalyzed azide and alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as the “click reaction”, has emerged as a versatile synthetic tool for targeting quadruplex nucleic acids.


2022 ◽  
Author(s):  
F. Friscourt

AbstractThe 1,3-dipolar cycloaddition of sydnones (1,2,3-oxadiazolium-5-olates) with dipolarophiles, such as alkynes, has recently emerged as a versatile click reaction, with applications ranging from the mild and regioselective preparation of polysubstituted pyrazoles for drug discovery to the metal-free bioorthogonal ligation of biomacromolecules in living cells. This chapter reviews the importance of metal catalysis for controlling the regioselectivity of the copper-mediated reaction (CuSAC), as well as the development of fluorogenic probes, the click and release strategy, and photo-triggered ligations based on strain-promoted sydnone–alkyne cycloadditions (SPSAC).


2021 ◽  
Vol 8 (3) ◽  
pp. 202056
Author(s):  
Md. Kausar Ahmed ◽  
Ajoy Kumer ◽  
Abu Bin Imran

Click reaction is a very fast, high yield with no by-product, biocompatible, tolerant to surrounded medium, and very specific cycloaddition reaction between azides and alkynes to form triazole. They are widely being employed in the synthesis of various polymeric materials. Here, the design, fabrication and characterization of hydrogel prepared using click reaction have been reported. At first, telechelic acetylene precursor for click reaction is prepared from diisocyanatohexane and propargyl alcohol in the presence of triethylamine. The azide derivatives of poly(hydroxyethylmethacrylate), i.e. poly(HEMA), are successfully prepared following two different routes. In route 1, esterification of bromopropionic acid is performed with HEMA monomer using N,N′- dicyclohexylcarbodiimide/4-dimethylaminopyridine (DCC/DMAP) as a catalyst followed by replacing bromide by azide moiety. Free radical polymerization of the fabricated monomer is then performed under N 2 atmosphere using azobisisobutyronitrile (AIBN) as an initiator. In route 2, polymerization of HEMA has been carried out first, then modification of the polymer with azide group via successive steps to obtain azide derivative polymer for click reaction. The hydrogel is prepared by a very fast, highly specific, and simple click reaction between azide derivative polymer and telechelic acetylene precursor using copper as a catalyst. The structures of derivatives of azide-functionalized HEMA, acetylene precursors and hydrogels are confirmed by FTIR and 1 H-NMR spectroscopy. The optimized structure of each precursor is determined, and their chemical and thermodynamic parameters are computationally studied in detail.


Sign in / Sign up

Export Citation Format

Share Document