scholarly journals Facile fabrication of polymer network using click chemistry and their computational study

2021 ◽  
Vol 8 (3) ◽  
pp. 202056
Author(s):  
Md. Kausar Ahmed ◽  
Ajoy Kumer ◽  
Abu Bin Imran

Click reaction is a very fast, high yield with no by-product, biocompatible, tolerant to surrounded medium, and very specific cycloaddition reaction between azides and alkynes to form triazole. They are widely being employed in the synthesis of various polymeric materials. Here, the design, fabrication and characterization of hydrogel prepared using click reaction have been reported. At first, telechelic acetylene precursor for click reaction is prepared from diisocyanatohexane and propargyl alcohol in the presence of triethylamine. The azide derivatives of poly(hydroxyethylmethacrylate), i.e. poly(HEMA), are successfully prepared following two different routes. In route 1, esterification of bromopropionic acid is performed with HEMA monomer using N,N′- dicyclohexylcarbodiimide/4-dimethylaminopyridine (DCC/DMAP) as a catalyst followed by replacing bromide by azide moiety. Free radical polymerization of the fabricated monomer is then performed under N 2 atmosphere using azobisisobutyronitrile (AIBN) as an initiator. In route 2, polymerization of HEMA has been carried out first, then modification of the polymer with azide group via successive steps to obtain azide derivative polymer for click reaction. The hydrogel is prepared by a very fast, highly specific, and simple click reaction between azide derivative polymer and telechelic acetylene precursor using copper as a catalyst. The structures of derivatives of azide-functionalized HEMA, acetylene precursors and hydrogels are confirmed by FTIR and 1 H-NMR spectroscopy. The optimized structure of each precursor is determined, and their chemical and thermodynamic parameters are computationally studied in detail.

2018 ◽  
Vol 42 (1) ◽  
pp. 272-280 ◽  
Author(s):  
Kan Zhang ◽  
Yuefeng Bai ◽  
Chun Feng ◽  
Guanghui Ning ◽  
Hailiang Ni ◽  
...  

A series of new H-shaped triphenylene discotic liquid crystal tetramers has been designed and synthesized using a copper-free [3+2] cycloaddition reaction.


1994 ◽  
Vol 59 (7) ◽  
pp. 1584-1595 ◽  
Author(s):  
Tomáš Jelínek ◽  
Josef Holub ◽  
Bohumil Štíbr ◽  
Xavier L. R. Fontaine ◽  
John D. Kennedy

Deprotonation of neutral arachno-4,5-C2B7H13 (1) either with 1, 8-(NMe2)2C10H6 (proton sponge, PS) or with a mixture of aqueous K2CO3 and [NMe4]Cl leads to the isolation in high yield of the [arachno-4,5-C2B7H12]- anion (2). Isostructural with this anion is the ligand derivative exo-6-(MeNC)-arachno-4,5-C2B7H11 (3), which is prepared in 20% yield from the reaction between arachno-4,5-C2B7H13 and MeNC in dichloromethane. Under comparable conditions compound 1 with tertiary amines gives the first representatives of the nine-vertex hypho family of dicarbaboranes, the ligand derivatives exo-5-(NR3)-hypho-4,9-C2B7H13 (4a and 4b, where R = Me and Et, respectively) in moderate yields (20 - 55%), whereas the reaction between 1 and aqueous NaCN results in the selective removal of one boron vertex to yield the eight-vertex [hypho-7,8-C2B6H13]- anion (5) in 61% yield. All compounds isolated were characterized by 11B and 1H NMR spectroscopy, with two-dimensional and selective decoupling techniques giving unambiguous assignments.


e-Polymers ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 439-448 ◽  
Author(s):  
Djamal Eddine Kherroub ◽  
Mohammed Belbachir ◽  
Saad Lamouri

AbstractThe present work is devoted to the synthesis and characterization of vinylsiloxane polymers produced by the use of an activated natural catalyst known as Maghnite-H+. The cationic ring opening polymerization of pentavinylpentamethylcyclopentasiloxane (V5D5) made it possible to obtain the desired polymeric materials. Through this study, we have adapted a new strategy of synthesis of a siloxane polymer with relatively high molecular mass, using a solid initiator activated by sulfuric acid, which has enabled us to combine the ecological aspect of synthesis and the effectiveness of the catalyst in this kind of reaction. Structural [infrared (IR), proton and carbon nuclear magnetic resonance (1H NMR and 13C NMR)], thermal differential scanning (DSC) and chromatographic (GPC) characterization methods have allowed the products obtained to be identified and their various properties to be focused on. The kinetic study was made to determine the order of the reaction. The proposed reaction mechanism shows the advantages of Maghnite-H+.


2014 ◽  
Vol 33 (2) ◽  
pp. 189 ◽  
Author(s):  
Mustafa Er ◽  
Ayşe Şahin ◽  
Hakan Tahtacı

<p>Thiosemicarbazone derivatives <strong>3a–e</strong> were synthesized by the reaction of various aldehydes<strong> 1a–e</strong> with 4-methyl thiosemicarbazide <strong>2</strong> in 78% to 90% yield. Then, the thiazole moieties of the target materials <strong>5a–e</strong> were obtained in high yields (71–93%) using the Hantzsch reaction utilizing thiosemicarbazone derivatives <strong>3a–e</strong> with ethyl-2-chloroacetoacetic ester. The substituted nitrile derivatives <strong>7a–e</strong> were obtained in moderate to high yield (58–84%) from the reaction of compounds <strong>5a–e</strong> with chloroacetonitrile by the nucleophilic aliphatic substitution reaction in the presence of anhydrous potassium carbonate. Finally, substituted 2-amino-1,3,4-thiadiazole compounds <strong>9a–e</strong> were obtained in moderate to good yields (51–62%) from the reaction of thiosemicarbazide with substituted nitrile derivatives <strong>7a–e</strong>. As a result, compounds that all share a high disposition for biological activities were obtained. The structures of the newly synthesized compounds were confirmed by IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, elemental analysis, and mass spectrometric techniques.</p>


2017 ◽  
Vol 1 (1) ◽  
pp. 22-34
Author(s):  
Mariana Barbosa ◽  
Cristina Martins ◽  
Paula Gomes

In recent years, there has been a growing demand for novel strategies for biomedical applications. Chitosan is a typical cationic amino-containing polysaccharide that has been widely used due to its unique properties. The grafting modification of chitosan has been explored as an interesting method to develop multifunctional novel chitosan hybrid materials for drug delivery, tissue engineering, and other biomedical applications. Recently, “click” chemistry has been introduced into the synthesis of polymeric materials with well-defined and complex chain architectures. The Huisgen’s 1,3-dipolar cycloaddition reaction between alkynes and azides yielding triazoles is the principal example of a “click” reaction. Bioconjugation, surface modification, and orthogonal functionalization of polymers were successfully performed through this chemoselective reaction. In recent literature interest has been shown in this cycloaddition for the modification of polysaccharides, however, only a few chitosan graft copolymers have been synthesized by this technique.


1986 ◽  
Vol 64 (4) ◽  
pp. 751-759 ◽  
Author(s):  
Daniel Cozak ◽  
Abdelhakim Mardhy ◽  
André Morneau

The reaction of CpTi(CO)2 (1), Cp2TiCl (2), and Cp2TiCl2 (3) (Cp = η5-C5H5) with purine (PuH) and adenine (AdH) in organic solvents is described. The compound 1 reacts with both molecules in an oxidative fashion giving Cp2Ti(C5H3N4)(C5H4N4) (4) and (Cp2Ti)2(C5H3N5) (5) with concomitant liberation of molecular carbon monoxide and hydrogen (4:1) following a first order rate law in metal complex. The compound 2 forms an adduct compound Cp2TiCl(C5H4N4) (6) with PuH. Monosubstituted derivatives Cp2TiCl(C5H3N4) (7) and Cp2TiCl(C5H4N5) (8) are formed from the reaction of the deprotonated bases with 3. In addition to the usual elemental analysis, the characteristic ir, 1H nmr, epr, and ms results are given for the new compounds.


1985 ◽  
Vol 50 (9) ◽  
pp. 2077-2083 ◽  
Author(s):  
Adolf Jurášek ◽  
Vladimír Žvak ◽  
Jaroslav Kováč ◽  
Oľga Rajniaková ◽  
Jarmila Štetinová

The 1,4-cycloaddition reaction of 4-phenyl-1,3-oxazole to 2-propinyl benzoate and dimethyl butinedioate afforded the respective 3-furylmethyl benzoate (I) and 3,4-bis(methoxycarbonyl)furan (II). These compounds served for the synthesis of 3-chloromethylfuran and 3,4-bis(chloromethyl)furan, which afforded via Wittig reaction 3-(β-arylvinyl)furans III (aryl = 5-nitro-2-furyl (IIIa), 5-nitro-2-thienyl (IIIb), 1-methyl-4-nitro-2-pyrrolyl (IIIc), and 4-nitrophenyl (IIIe)) and 3,4-bis(β-arylvinyl)furans IV (aryl = 5-nitrofuryl (IVa), 5-nitro-2-thienyl (IVc), and 4-nitrophenyl (IVd)). According to spectral evidence (1H NMR, IR, UV spectra), compound IIIa and IIIb originated as E isomers, whilst the remaining products are a mixture of E and Z isomers; some couples were succeded to separate.


Author(s):  
Hiren H. Variya ◽  
Vikram Panchal ◽  
Falguni G. Bhabhor ◽  
G.R. Patel

In this article, we have described to design and synthesized a series of substituted chalcone based 1,3,4-oxadiazole derivatives. Titled compounds (E)-S-(-5-phenyl-1,3,4-oxadiazol-2-yl) 2-(4-(3-(5-methyl-3oxo-2(p-tolyl)-2,3-dihydro-1H-pyrazol-4-yl)-3-oxoprop-1-en-1-yl) phenoxy) etanethioate (III1-6) were synthesized using of derivatives of S-(-5-phenyl-1,3,4 oxadiazole-2-yl)2-chloroethaethioate (I1-6) were reacted with (E)-4-(3-(4-hydroxyphenyl) acryloyl)-5-methyl-2(p-tolyl)-1H-pyrazol-3(2H)-one (II) in presence of K2CO3 in DMF as a solvent. The synthesized compounds were evaluated for their antimicrobial activity. The newly synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, and LC-MS) Methods.


1978 ◽  
Vol 56 (11) ◽  
pp. 1492-1499 ◽  
Author(s):  
Stephen Hanessian ◽  
Robert Massé ◽  
Goran Ekborg

Treatment of penta-N-benzyloxycarbonylparomomycin with benzaldehyde and excess zinc chloride gives a dibenzylidene derivative in high yield. This consists of the 4′,6′-O-benzylidene 4′′′,6′′′-N,O-benzylidene (dihydrooxazine) derivative of penta-N-benzyloxycarbonylparomomycin. Chemical evidence is presented to support this structure and model studies are reported for the formation of dihydrooxazine and oxazolidine derivatives of benzyloxycarbonylamino sugars containing suitably situated hydroxyl groups. The easily obtained dihydrooxazine derivative of paromomycin constitutes an interesting, preferentially blocked derivative, that is useful for the chemical modification of the parent antibiotic.


Sign in / Sign up

Export Citation Format

Share Document