scholarly journals Large-scale preparation for efficient polymer-based room-temperature phosphorescence via click chemistry

2020 ◽  
Vol 6 (21) ◽  
pp. eaaz6107 ◽  
Author(s):  
R. Tian ◽  
S.-M. Xu ◽  
Q. Xu ◽  
C. Lu

To achieve efficient polymer-based room-temperature phosphorescence (RTP) materials, covalently embedding phosphors into the polymer matrix appeared as the most appealing approach. However, it is still highly challenging to fabricate RTP materials on a large scale because of the inefficient binding engineering and time-consuming covalent reactions. Here, we have proposed a scalable preparation approach for RTP materials by the facile B─O click reaction between boronic acid–modified phosphors and polyhydroxy polymer matrix. The ab initio molecular dynamics simulations demonstrated that the phosphors were effectively immobilized, resulting in the suppressed nonradiative transitions and activated RTP emission. In comparison to the reported covalent binding time of several hours, such a B─O click reaction can be accomplished within 20 s under ambient environment. The developed strategy simplified the construction of polymer-based RTP polymeric materials by the introduction of facile click chemistry. Our success provides inspirations and possibilities for the scale-up production of RTP materials.

2017 ◽  
Vol 1 (1) ◽  
pp. 22-34
Author(s):  
Mariana Barbosa ◽  
Cristina Martins ◽  
Paula Gomes

In recent years, there has been a growing demand for novel strategies for biomedical applications. Chitosan is a typical cationic amino-containing polysaccharide that has been widely used due to its unique properties. The grafting modification of chitosan has been explored as an interesting method to develop multifunctional novel chitosan hybrid materials for drug delivery, tissue engineering, and other biomedical applications. Recently, “click” chemistry has been introduced into the synthesis of polymeric materials with well-defined and complex chain architectures. The Huisgen’s 1,3-dipolar cycloaddition reaction between alkynes and azides yielding triazoles is the principal example of a “click” reaction. Bioconjugation, surface modification, and orthogonal functionalization of polymers were successfully performed through this chemoselective reaction. In recent literature interest has been shown in this cycloaddition for the modification of polysaccharides, however, only a few chitosan graft copolymers have been synthesized by this technique.


2018 ◽  
Vol 42 (4) ◽  
pp. 3078-3086 ◽  
Author(s):  
Reza Bonyasi ◽  
Mohammad Gholinejad ◽  
Fariba Saadati ◽  
Carmen Nájera

Highly water dispersible CuFe2O4@Starch catalyzed click reaction.


2021 ◽  
Author(s):  
Xiang Ma ◽  
Zi-Ang Yan ◽  
Xiaohan Lin ◽  
Siyu Sun ◽  
He Tian

Pure organic room-temperature phosphorescence (RTP) materials have attracted wide attention for their easy preparation, low toxicity and applications in professional fields such as bioimaging and anti-counterfeiting. Developing phosphorescent systems with more universality and less difficulty in synthesis has long been the pursuit of materials scientists. By employing polymeric quaternary ammonium salt with an ionic bonding matrix and heavy atoms, commercial fluorescent dyes are directly endowed with phosphorescence emission. In a single amorphous polymer, the external heavy-atom effect generates excited triplet states, which are further stabilized by the rigid polymer matrix. This study proposed a new general strategy to design and develop pure organic RTP materials starting from the vast library of organic dyes without complicated chemical synthesis.


2021 ◽  
Author(s):  
Hongzhuo Wu ◽  
Deliang Wang ◽  
zheng zhao ◽  
Dong Wang ◽  
Yu Xiong ◽  
...  

<p><a>Amorphous organic materials</a> exhibiting room temperature phosphorescence (RTP) are good candidates for optoelectronic and biomedical applications. In this proof-of-concept work, we present a rational strategy to activate persistent RTP with a wide range of color from doped films in which electron-rich organic phosphor as donor while electron-deficient polymer matrix as acceptor through electrostatic attraction interactions. By tailoring electrostatic attraction interactions between the donor and acceptor, an ultralong lifetime of 968.1 ms is achieved for doped film TBB-6OMe@PAN. Control experiments combined with theoretical calculations demonstrate that the electrostatic attraction interactions between organic phosphor and polymer matrix should be responsible for the persistent RTP of doped films. Besides, doped films show reversible thermal response and excellent stability in water, indicating an advantage of electrostatic attraction over hydrogen bond in terms of practical application.</p>


2015 ◽  
Vol 1 (1) ◽  
pp. 22-34 ◽  
Author(s):  
Mariana Barbosa ◽  
Cristina Martins ◽  
Paula Gomes

In recent years, there has been a growing demand for novel strategies for biomedical applications. Chitosan is a typical cationic amino-containing polysaccharide that has been widely used due to its unique properties. The grafting modification of chitosan has been explored as an interesting method to develop multifunctional novel chitosan hybrid materials for drug delivery, tissue engineering, and other biomedical applications. Recently, “click” chemistry has been introduced into the synthesis of polymeric materials with well-defined and complex chain architectures. The Huisgen’s 1,3-dipolar cycloaddition reaction between alkynes and azides yielding triazoles is the principal example of a “click” reaction. Bioconjugation, surface modification, and orthogonal functionalization of polymers were successfully performed through this chemoselective reaction. In recent literature interest has been shown in this cycloaddition for the modification of polysaccharides, however, only a few chitosan graft copolymers have been synthesized by this technique.


2021 ◽  
Author(s):  
Xiang Ma ◽  
Zi-Ang Yan ◽  
Xiaohan Lin ◽  
Siyu Sun ◽  
He Tian

Pure organic room-temperature phosphorescence (RTP) materials have attracted wide attention for their easy preparation, low toxicity and applications in professional fields such as bioimaging and anti-counterfeiting. Developing phosphorescent systems with more universality and less difficulty in synthesis has long been the pursuit of materials scientists. By employing polymeric quaternary ammonium salt with an ionic bonding matrix and heavy atoms, commercial fluorescent dyes are directly endowed with phosphorescence emission. In a single amorphous polymer, the external heavy-atom effect generates excited triplet states, which are further stabilized by the rigid polymer matrix. This study proposed a new general strategy to design and develop pure organic RTP materials starting from the vast library of organic dyes without complicated chemical synthesis.


Sign in / Sign up

Export Citation Format

Share Document