scholarly journals Recent Progress in Long-term Stability of Perovskite Solar Cells

2018 ◽  
Vol 1 (2) ◽  
pp. 52-62 ◽  
Author(s):  
Seyedali Emami ◽  
Luísa Andrade ◽  
Adélio Mendes

Perovskite solar cells made a huge breakthrough among the nanostructured thin film photovoltaics. They exhibited certified power conversion efficiency (PCE) as high 24 % in 2015. A vast amount of research were spent on improvement of PCE and lowering the fabrication process temperature, resulting in outstanding outcomes in these areas. In contrast, the long-term stability and commercialization of these devices were not well studied. The review briefly summaries the challenges of perovskite solar cells in the road of stabilization and commercialization.

2019 ◽  
Vol 9 (20) ◽  
pp. 4393 ◽  
Author(s):  
Jien Yang ◽  
Songhua Chen ◽  
Jinjin Xu ◽  
Qiong Zhang ◽  
Hairui Liu ◽  
...  

Perovskite solar cells (PSCs) employing organic-inorganic halide perovskite as active layers have attracted the interesting of many scientists since 2009. The power conversion efficiency (PCE) have pushed certified 25.2% in 2019 from initial 3.81% in 2009, which is much faster than that of any type of solar cell. In the process of optimization, many innovative approaches to improve the morphology of perovskite films were developed, aiming at elevate the power conversion efficiency of perovskite solar cells (PSCs) as well as long-term stability. In the context of PSCs research, the perovskite precursor solutions modified with different additives have been extensively studied, with remarkable progress in improving the whole performance. In this comprehensive review, we focus on the forces induced by additives between the cations and anions of perovskite precursor, such as hydrogen bonds, coordination or some by-product (e.g., mesophase), which will lead to form intermediate adduct phases and then can be converted into high quality films. A compact uniform perovskite films can not only upgrade the power conversion efficiency (PCE) of devices but also improve the stability of PSCs under ambient conditions. Therefore, strategies for the implementation of additives engineering in perovskites precursor solution will be critical for the future development of PSCs. How to manipulate the weak forces in the fabrication of perovskite film could help to further develop high-efficiency solar cells with long-term stability and enable the potential of future practical applications.


2021 ◽  
Author(s):  
Arindam Mallick ◽  
Iris Visoly-Fisher

Following the achievement of impressive power conversion efficiencies of perovskite solar cells (PSCs), the current challenges of this technology include long-term stability, upscaling for industrial processing, and its environmental effect....


2018 ◽  
Vol 5 (5) ◽  
pp. 1700387 ◽  
Author(s):  
Qingxia Fu ◽  
Xianglan Tang ◽  
Bin Huang ◽  
Ting Hu ◽  
Licheng Tan ◽  
...  

Science ◽  
2018 ◽  
Vol 361 (6408) ◽  
pp. eaat8235 ◽  
Author(s):  
Yaoguang Rong ◽  
Yue Hu ◽  
Anyi Mei ◽  
Hairen Tan ◽  
Makhsud I. Saidaminov ◽  
...  

Perovskite solar cells (PSCs) have witnessed rapidly rising power conversion efficiencies, together with advances in stability and upscaling. Despite these advances, their limited stability and need to prove upscaling remain crucial hurdles on the path to commercialization. We summarize recent advances toward commercially viable PSCs and discuss challenges that remain. We expound the development of standardized protocols to distinguish intrinsic and extrinsic degradation factors in perovskites. We review accelerated aging tests in both cells and modules and discuss the prediction of lifetimes on the basis of degradation kinetics. Mature photovoltaic solutions, which have demonstrated excellent long-term stability in field applications, offer the perovskite community valuable insights into clearing the hurdles to commercialization.


Author(s):  
Zhihai Liu ◽  
Lei Wang ◽  
Chongyang Xu ◽  
Xiaoyin Xie

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we fabricated electron-transport-layer-free...


Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 28-34
Author(s):  
Mahmoud Samadpour ◽  
Mahsa Heydari ◽  
Mahdi Mohammadi ◽  
Parisa Parand ◽  
Nima Taghavinia

Author(s):  
Eun-Cheol Lee ◽  
Zhihai Liu

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we improved the...


Author(s):  
Linlin Qiu ◽  
Jiacheng Zou ◽  
Wei-Hsiang Chen ◽  
Lika Dong ◽  
Deqiang Mei ◽  
...  

The crystallinity of a perovskite film can play a key role in the photovoltaic performance and long-term stability of perovskite solar cells (PSCs).


Sign in / Sign up

Export Citation Format

Share Document