scholarly journals A New Controller Design Method for Single Loop Internal Model Control Systems

2020 ◽  
Vol 29 (2) ◽  
pp. 219-229
Author(s):  
Arun RAMAVEERAPATHIRAN ◽  
Muniraj RATHINAM ◽  
Willjuice Iruthayarajan MARIA SILUVAIRAJ
2012 ◽  
Vol 197 ◽  
pp. 311-315 ◽  
Author(s):  
Qi Bing Jin ◽  
Rong Li

A V-norm Decoupling internal model control (IMC) method with filters based on inverted decoupling for multivariate stable object is proposed in this paper. The actual industrial process is very difficult to obtain an accurate model, which makes the control effect not satisfactory. To solve this problem, the V-norm decoupling controller is designed on the basis of the inverted decoupling, and a filter is added in front of the controller to reduce coupling and increase robustness. Compared with traditional multivariable controller designed method, the method of designing the internal model controller in this paper is simpler and less calculation. Finally, the Wood/Berry model is taken as the simulated object to verify the controller design method is reasonable. The results show that V-norm decoupling internal model controller method is effective and feasible, even the system model is mismatched.


2012 ◽  
Vol 236-237 ◽  
pp. 356-359 ◽  
Author(s):  
Ling Quan ◽  
Hai Long Zhang

Multivariable system with time delay and coupling widely exist in industrial which may destroy the normal work of control system. An unconventional internal model controller design method will be introduced in this paper. The closed loop system can be decouple by calculate the inverse of transfer function matrix and the optimal diagonal decomposition matrix. Finally, this method was applied in a multivariable system with different time delays, the simulation results can show the effectiveness of this method.


2013 ◽  
Vol 648 ◽  
pp. 305-310
Author(s):  
Ji Liang Shang ◽  
Da Hai Ren

In the industrial process of common multivariable time delay input/output system, a multivariable decoupling internal model controller design method is put forward based on the internal model control structure, the method for the design of internal model controller has the function of decoupling and controller. The advantage has the ability to achieve approximate or complete decoupling in nominal system output response, the method is used on the multivariable strong coupling of the boiler combustion control system to design and simulation study, the simulation results prove the effectiveness of the method. And in the process model and process mismatch showed strong robustness and anti jamming ability.


Author(s):  
D Garabandić ◽  
T Petrović

A linear feedback controller for pulse-width-modulated d.c./d.c. regulator is designed using a frequency domain optimization method based on internal-model-control theory. This method aims to produce suboptimal low-order controllers which are ‘robust’, in the sense that the closed-loop system is guaranteed to meet stability objectives in the presence of model uncertainty. The small-signal model of a d.c./d.c. converter is used for the controller design. The model uncertainty description derived here is based on experiments and non-linear modelling. The result of the synthesis is a family of controllers, and each member of this family satisfies the robust control objectives. All controllers have a multi-loop structure including two feedback loops and one feedforward loop. A detailed design of the controller, including experimental results, is presented.


Author(s):  
Dazi Li ◽  
Xingyu He

Many processes in the industry can be modeled as fractional order, research on the fractional order become more and more popular. Usually, controllers such as fractional order PID (FOPID) or fractional active disturbance rejection control (FADRC) are used to control single-input-single-output (SISO) fractional order system. However, when it comes to fractional order two-input-two-output (TITO) processes, few research focus on this. In this paper, a new design method for fractional order control based on multivariable non-internal model control with inverted decoupling is proposed to handle non-integer order two-input-two-output system. The controller proposed in this paper just has two parameters to tune compared with the five parameters of the FOPID controller, and the controller structure can be achieved by internal model control (IMC) method which means it is easy to implement. The parameters tuning method used in this paper is based on frequency domain strategy. Compared with integer order situation, fractional order method is more complex, because the calculation of the frequency domain characteristics is difficult. The controller proposed in this paper is robust to process gain variations, what’s more, it provides ideal performance for both set point-tracking and disturbance rejection. Numerical results are given to show the performance of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document