scholarly journals Variation of surface runoff due to change of land use in The river duero watershed

2022 ◽  
Vol 13 (1) ◽  
pp. 01-30
Author(s):  
Nelly Bernal-Santana ◽  
◽  
Gustavo Cruz-Cárdenas ◽  
José Teodoro Silva ◽  
Sergio Martínez-Trinidad ◽  
...  
Keyword(s):  
Land Use ◽  
2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Aman Srivastava ◽  
Pennan Chinnasamy

AbstractThe present study, for the first time, examined land-use land cover (LULC), changes using GIS, between 2000 and 2018 for the IIT Bombay campus, India. Objective was to evaluate hydro-ecological balance inside campus by determining spatio-temporal disparity between hydrological parameters (rainfall-runoff processes), ecological components (forest, vegetation, lake, barren land), and anthropogenic stressors (urbanization and encroachments). High-resolution satellite imageries were generated for the campus using Google Earth Pro, by manual supervised classification method. Rainfall patterns were studied using secondary data sources, and surface runoff was estimated using SCS-CN method. Additionally, reconnaissance surveys, ground-truthing, and qualitative investigations were conducted to validate LULC changes and hydro-ecological stability. LULC of 2018 showed forest, having an area cover of 52%, as the most dominating land use followed by built-up (43%). Results indicated that the area under built-up increased by 40% and playground by 7%. Despite rapid construction activities, forest cover and Powai lake remained unaffected. This anomaly was attributed to the drastically declining barren land area (up to ~ 98%) encompassing additional construction activities. Sustainability of the campus was demonstrated with appropriate measures undertaken to mitigate negative consequences of unwarranted floods owing to the rise of 6% in the forest cover and a decline of 21% in water hyacinth cover over Powai lake. Due to this, surface runoff (~ 61% of the rainfall) was observed approximately consistent and being managed appropriately despite major alterations in the LULC. Study concluded that systematic campus design with effective implementation of green initiatives can maintain a hydro-ecological balance without distressing the environmental services.


2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


2012 ◽  
Vol 9 (6) ◽  
pp. 7919-7945
Author(s):  
L. L. Wang ◽  
C. C. Song ◽  
G. S. Yang

Abstract. Dissolved organic carbon (DOC) is a significant component of carbon and nutrient cycling in fluvial ecosystems. Natural wetlands, as important DOC sources for river and ocean ecosystems, have experienced extensive natural and anthropogenic disturbances such as climate change, hydrological variations and land use change in recent years. In this study, we examined the concentrations and spectroscopic characteristics of DOC in surface runoff from contrasting wetlands along the lower Amur River Basin in the Sanjiang Plain, Northeastern China. Surface runoff from seven sites (two natural phialiform wetlands, three natural riparian wetland, one degraded wetland, and one artificial wetland i.e. rice paddy) were monitored during the growing seasons of 2009 and 2010. Surface runoff from the natural wetland sites exhibited a wide range of DOC concentrations (10.06–48.73 mg l−1) during the two-year sampling period. The specific ultraviolet absorbance (SUVA) and color values of DOC in surface runoff were also highly variable at different natural wetland sites. Our analysis also found that DOC values were significantly lower in the surface runoff at the artificial wetland site compared with those from surface runoff at the five natural wetland sites and one degraded wetland site (P < 0.01). The colour per carbon unit (C / C) ratio in surface runoff at the artificial wetland site was one to three times lower, while the E4 / E6 ratio (Abs465 / Abs665) was reduced by 42.07% to 55.36%, compared to those from runoff water at the five natural wetland sites. The C / C ratios in surface runoff at the natural wetland sites were higher than that from surface runoff at the degraded wetland, which in turn has greater values than that from surface runoff at the artificial wetland site. Meanwhile, the E4 / E6 ratio in the surface runoff from the artificial wetland was lower compared to that in surface runoff at the degraded wetland site (P < 0.05). This implies that disturbance to DOC concentrations and spectroscopic characteristics in surface runoff is stronger from natural wetland conversion to rice paddy land than that from wetland degradation. The dataset from this study can provide insightful points for understanding the underlying mechanisms of aquatic DOC dynamics from wetland ecosystems, and improve land use policy and management strategies in the future.


2021 ◽  
Vol 331 ◽  
pp. 08002
Author(s):  
Rusli HAR ◽  
Aprisal ◽  
Werry Darta Taifur ◽  
Teguh Haria Aditia Putra

Changes in land use in the Air Dingin watershed (DAS) area in Padang City, Indonesia, lead to a decrease in rainwater infiltration volume to the ground. Some land use in the Latung sub-watershed decrease in infiltration capacity with an increase in surface runoff. This research aims to determine the effect of land-use changes on infiltration capacity and surface runoff. Purposive sampling method was used in this research. The infiltration capacity was measured directly in the field using a double-ring infiltrometer, and the data was processed using the Horton model. The obtained capacity was quantitatively classified using infiltration zoning. Meanwhile, the Hydrologic Engineering Center - Hydrology Modeling System with the Synthetic Unit Hydrograph- Soil Conservation Service -Curve Number method was used to analyze the runoff discharge. The results showed that from the 13 measurement points carried out, the infiltration capacity ranges from 0.082 - 0.70 cm/minute or an average of 0.398 cm/minute, while the rainwater volume is approximately 150,000 m3/hour/km2. Therefore, the soil infiltration capacity in the Latung sub-watershed is in zone VI-B or very low. This condition had an impact on changes in runoff discharge in this area, from 87.84 m3/second in 2010 to 112.8 m3/second in 2020 or a nail of 22.13%. Based on the results, it is concluded that changes in the land led to low soil infiltration capacity, thereby leading to an increase in surface runoff.


Sign in / Sign up

Export Citation Format

Share Document