scholarly journals SAFETY ASSESSMENT OF NAVIGATED TRANSCRANIAL MAGNETIC STIMULATION FOR PREOPERATIVE MOTOR MAPPING IN PATIENTS WITH BRAIN TUMORS

2018 ◽  
Vol 177 (3) ◽  
pp. 10-13
Author(s):  
A. Yu. Shcherbuk ◽  
M. E. Eroshenko ◽  
Yu. A. Shcherbuk
2021 ◽  
Vol 12 ◽  
Author(s):  
Giuseppe Emmanuele Umana ◽  
Gianluca Scalia ◽  
Francesca Graziano ◽  
Rosario Maugeri ◽  
Nicola Alberio ◽  
...  

Background: The surgical strategy for brain glioma has changed, shifting from tumor debulking to a more careful tumor dissection with the aim of a gross-total resection, extended beyond the contrast-enhancement MRI, including the hyperintensity on FLAIR MR images and defined as supratotal resection. It is possible to pursue this goal thanks to the refinement of several technological tools for pre and intraoperative planning including intraoperative neurophysiological monitoring (IONM), cortico-subcortical mapping, functional MRI (fMRI), navigated transcranial magnetic stimulation (nTMS), intraoperative CT or MRI (iCT, iMR), and intraoperative contrast-enhanced ultrasound. This systematic review provides an overview of the state of the art techniques in the application of nTMS and nTMS-based DTI-FT during brain tumor surgery.Materials and Methods: A systematic literature review was performed according to the PRISMA statement. The authors searched the PubMed and Scopus databases until July 2020 for published articles with the following Mesh terms: (Brain surgery OR surgery OR craniotomy) AND (brain mapping OR functional planning) AND (TMS OR transcranial magnetic stimulation OR rTMS OR repetitive transcranial stimulation). We only included studies regarding motor mapping in craniotomy for brain tumors, which reported data about CTS sparing.Results: A total of 335 published studies were identified through the PubMed and Scopus databases. After a detailed examination of these studies, 325 were excluded from our review because of a lack of data object in this search. TMS reported an accuracy range of 0.4–14.8 mm between the APB hotspot (n1/4 8) in nTMS and DES from the DES spot; nTMS influenced the surgical indications in 34.3–68.5%.Conclusion: We found that nTMS can be defined as a safe and non-invasive technique and in association with DES, fMRI, and IONM, improves brain mapping and the extent of resection favoring a better postoperative outcome.


2020 ◽  
Vol 132 (4) ◽  
pp. 1033-1042 ◽  
Author(s):  
Nico Sollmann ◽  
Alessia Fratini ◽  
Haosu Zhang ◽  
Claus Zimmer ◽  
Bernhard Meyer ◽  
...  

OBJECTIVENavigated transcranial magnetic stimulation (nTMS) in combination with diffusion tensor imaging fiber tracking (DTI FT) is increasingly used to locate subcortical language-related pathways. The aim of this study was to establish nTMS-based DTI FT for preoperative risk stratification by evaluating associations between lesion-to-tract distances (LTDs) and aphasia and by determining a cut-off LTD value to prevent surgery-related permanent aphasia.METHODSFifty patients with left-hemispheric, language-eloquent brain tumors underwent preoperative nTMS language mapping and nTMS-based DTI FT, followed by tumor resection. nTMS-based DTI FT was performed with a predefined fractional anisotropy (FA) of 0.10, 0.15, 50% of the individual FA threshold (FAT), and 75% FAT (minimum fiber length [FL]: 100 mm). The arcuate fascicle (AF), superior longitudinal fascicle (SLF), inferior longitudinal fascicle (ILF), uncinate fascicle (UC), and frontooccipital fascicle (FoF) were identified in nTMS-based tractography, and minimum LTDs were measured between the lesion and the AF and between the lesion and the closest other subcortical language-related pathway (SLF, ILF, UC, or FoF). LTDs were then associated with the level of aphasia (no/transient or permanent surgery-related aphasia, according to follow-up examinations).RESULTSA significant difference in LTDs was observed between patients with no or only surgery-related transient impairment and those who developed surgery-related permanent aphasia with regard to the AF (FA = 0.10, p = 0.0321; FA = 0.15, p = 0.0143; FA = 50% FAT, p = 0.0106) as well as the closest other subcortical language-related pathway (FA = 0.10, p = 0.0182; FA = 0.15, p = 0.0200; FA = 50% FAT, p = 0.0077). Patients with surgery-related permanent aphasia showed the lowest LTDs in relation to these tracts. Thus, LTDs of ≥ 8 mm (AF) and ≥ 11 mm (SLF, ILF, UC, or FoF) were determined as cut-off values for surgery-related permanent aphasia.CONCLUSIONSnTMS-based DTI FT of subcortical language-related pathways seems suitable for risk stratification and prediction in patients suffering from language-eloquent brain tumors. Thus, the current role of nTMS-based DTI FT might be expanded, going beyond the level of being a mere tool for surgical planning and resection guidance.


2019 ◽  
Vol 122 ◽  
pp. e1578-e1587 ◽  
Author(s):  
Josephine Jung ◽  
José-Pedro Lavrador ◽  
Sabina Patel ◽  
Anastasios Giamouriadis ◽  
Jordan Lam ◽  
...  

2017 ◽  
Vol 128 (9) ◽  
pp. e273-e274
Author(s):  
Alexandra Poydasheva ◽  
Andrey Chernyavskiy ◽  
Ilya Bakulin ◽  
Natalia Suponeva ◽  
Michael Piradov

2019 ◽  
Vol 10 ◽  
pp. 134 ◽  
Author(s):  
Pedro Henrique da Costa Ferreira Pinto ◽  
Flavio Nigri ◽  
Egas Moniz Caparelli-Dáquer ◽  
Jucilana dos Santos Viana

Background: Navigated transcranial magnetic stimulation (nTMS) is a well establish a noninvasive method for preoperative brain motor mapping. We commonly use magnetic resonance imaging (MRI) to supply the nTMS system. In some cases, MRI is not possible or available, and the use of computed tomography (CT) is necessary. We present the first report describing the association of CT and nTMS motor mapping for brain lesion resection. Case Description: CT imaging of a 59-year-old man suffering from acquired immune deficiency syndrome for 17 years, presenting with seizure and right hemiparesis, revealed a small single hypodense ring-enhancing lesion in the left central sulci suggesting cerebral toxoplasmosis. After 3 weeks of neurotoxoplasmosis treatment, due to four consecutive tonic-clonic seizures, a new CT scan was performed and showed no lesion changes. MRI was in maintenance at that time. Infectious diseases department suggested a brain lesion biopsy. Due to lesion’s location, we decided to perform a presurgical nTMS motor mapping. After a small craniotomy, we could precisely locate and safely totally remove the lesion. The pathology report revealed a high suspicious toxoplasmosis pattern. The patient was discharged after 2 days and continued toxoplasmosis treatment. After 6 months follow-up, he showed no signs of any procedure-related deficits or radiological recurrence. Conclusion: We report the feasibility and applicability of nTMS motor mapping using CT scan as an image source. It gives neurosurgeons another possibility to perform motor mapping for brain lesion removal, especially when MRI is not available or feasible.


Sign in / Sign up

Export Citation Format

Share Document