scholarly journals A CLOSER EXAMINATION OF THE CLAIMS OF EXCELLENT CORROSION RESISTANCE OF STAINLESS STEEL: TEXTBOOK MISCONCEPTIONS AND MISINTERPRETATIONS

Author(s):  
Aezeden O. Mohamed

This paper examines misconceptions and misinterpretations concerning the common assertion in textbooks that stainless steels has excellent corrosion resistance due to the addition of alloying elements such as nickel (Ni), chromium (Cr), and molybdenum (Mo).A closer look at this claim reveals underlying assumptions that lead to this imprecise statement. Corrosion experiments have been established in a course in engineering materials that expose these assumptions.Following a discussion of the tests and their results, it is suggested that statements in textbooks that stainless steel has excellent corrosion resistance should be qualified. It is hoped that by bringing this shortcoming to the attention of engineering educators, the misconceptions and misinterpretations can be corrected.

Alloy Digest ◽  
2009 ◽  
Vol 58 (5) ◽  

Abstract Crucible 174 SXR is a premium-quality precipitation-hardening stainless steel designed for use as rifle barrels. It is a modification of Crucible’s 17Cr-4Ni that offers substantially improved machinability without sacrificing toughness. Its excellent corrosion resistance approaches that of a 300 series austenitic stainless steel, while its high strength is characteristic of 400 series martensitic stainless steels. At similar hardness levels, Crucible 174 SXR offers greater toughness than either the 410 or 416 stainless steels which are commonly used for rifle barrels. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming and heat treating. Filing Code: SS-1034. Producer or source: Crucible Service Centers.


2004 ◽  
Vol 128 (2) ◽  
pp. 370-376 ◽  
Author(s):  
Bruce A. Pint

New materials are being evaluated to replace type 347 stainless steel in microturbine recuperators operating at higher temperatures in order to increase the efficiency of the microturbine. Commercial alloys 120 and 625 are being tested along with potentially lower cost substitutes, such as Fe-20Cr-25Ni and Fe-20Cr-20Ni. Long-term testing of these materials at 650–700 °C shows excellent corrosion resistance to a simulated exhaust gas environment. Testing at 800 °C has been used to further differentiate the performance of the various materials. The depletion of Cr from foils of these materials is being used to evaluate the rate of attack. Although those alloys with the highest Ni and Cr contents have longer lives in this environment, lower alloyed steels may have sufficient protection at a lower cost.


2012 ◽  
Vol 706-709 ◽  
pp. 2217-2221
Author(s):  
Tadashi Nishihara

Metastable austenitic stainless steels are attractive industrial materials with excellent corrosion resistance, mechanical properties, and formability. However, during plastic deformation, α’martensite can be formed. The volume fraction of that particular phase influences the mechanical and other properties (such as corrosion resistance) of these steels. Therefore, it is important to determine the amount of α’martensite in the obtained microstructures. Currently, the volume fraction of deformation-induced martensite in stainless steel is most commonly measured by the X-ray diffraction or magnetic permeability methods. In this study, a novel method of measuring deformation-induced martensite using magnetic contact holding force is proposed. Measurement trials were carried out using a prototype measuring system, and the results of measurements taken from SUS301 and SUS304 stainless steels are discussed in terms of deformation and martensite volume fraction.


Alloy Digest ◽  
2020 ◽  
Vol 69 (10) ◽  

Abstract ATI 310S is a 25Cr-20Ni austenitic stainless steel that is typically used for elevated temperature applications. Owing to its higher chromium and nickel contents the alloy provides comparable corrosion resistance, superior resistance to oxidation, and the retention of a larger fraction of room temperature strength than the common austenitic stainless steels such as Type 304. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1328. Producer or source: ATI.


Author(s):  
Bruce A. Pint ◽  
Karren L. More

New materials are being evaluated to replace type 347 stainless steel in microturbine recuperators operating at higher temperatures in order to increase the efficiency of the microturbine. Commercial alloys 120 and 625 are being tested along with potentially lower cost substitutes such as Fe-20Cr-25Ni and Fe-20Cr-20Ni. Long-term testing of these materials at 650°–700°C shows excellent corrosion resistance to a simulated exhaust gas environment. Testing at 800°C has been used to further differentiate the performance of the various materials. The depletion of Cr from foils of these materials is being used to evaluate the rate of attack. While those alloys with the highest Ni and Cr contents have longer lives in this environment, lower alloyed steels may have sufficient protection at a lower cost.


2006 ◽  
pp. 99-114

Abstract Duplex stainless steels are two-phase alloys based on the iron-chromium-nickel system. Duplex stainless steels offer corrosion resistance and cost advantages over the common austenitic stainless steels. Although there are some problems with welding duplex alloys, considerable progress has been made in defining the correct parameters and chemistry modifications for achieving sound welds. This chapter provides a basic understanding of the development, grade designations, microstructure, properties, and general welding considerations of duplex stainless steel. It also discusses the influence of ferrite-austenite balance on corrosion resistance and the influence of different welding conditions on various material properties of alloy 2205 (UNS S31803).


2011 ◽  
Vol 399-401 ◽  
pp. 1540-1546 ◽  
Author(s):  
Jun Ping Yuan ◽  
Wei Li ◽  
Chang Wang ◽  
Chun Yu Ma

This paper introduced several conventional stainless steels for piercing jewelry, and discussed their corrosion resistance, nickel allergy problem and risk of piercing infection. The authors proposed that several requirements should be taken into consideration in developing stainless steel materials for piercing jewelry, including corrosion resistance, safety, anti-bacterial, castability, workability, weldability, surface treatment property, and etc. High nitrogen and nickel free or low nickel stainless steels with anti-bacterial performance, which had many unique characteristics such as excellent corrosion resistance, no nickel allergy and less risk of piercing infection, would become a new development trend of stainless steels for piercing jewelry.


Alloy Digest ◽  
1961 ◽  
Vol 10 (12) ◽  

Abstract AISI Types 303 and 303 Se austenitic chromium nickel stainless steels to which elements have been added to improve machining and non-seizing characteristics. They are the most readily machinable of all the austenitic chromium nickel grades and are suitable for use in automatic screw machines. They are widely used to minimize seizing and galling. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-126. Producer or source: Stainless steel mills.


Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Alloy Digest ◽  
1997 ◽  
Vol 46 (8) ◽  

Abstract Project 70 and Project 7000 Type 203 stainless steels are alternative materials to AISI Type 303, resulfurized stainless steel having improved machinability. High manganese and copper are substituted for some nickel resulting in a stable austenitic structure having low magnetic permeability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-505. Producer or source: Carpenter. Originally published May 1989, revised August 1997.


Sign in / Sign up

Export Citation Format

Share Document