scholarly journals Shifting Cultivation or Oil Palm Plantation? Integrated Assessment of Land Use Change in Dusun Tonggong, Parindu, West Kalimantan, Indonesia

Author(s):  
Rizky Ramadhan ◽  
Akihisa Mori ◽  
Oekan S. Abdoellah
Author(s):  
Rizky Ramadhan

Since 2006, Indonesia became the largest oil palm producing country in the world. For Indonesia, oil palm is a prime commodity because it has become a source of foreign exchange. The rapid development of the oil palm industry in Indonesia resulted in a debate on the positive and negative impacts caused by the plantations, especially related to the issue of land use change. This study summarizes the quantitative aspects and the social dynamics related to land use change to oil palm plantation on mineral soil, using a comprehensive and integrated assessment. The purpose of this research is to evaluate the financial feasibility of land use change in oil palm plantation from three aspects (economy, social, and environmental aspect) and to provide a descriptive explanation of the cause of land use change from ladang to oil palm by the community. The present study suggests that the changing paradigm of the local people in the case study area to convert their ladang to oil palm plantation cannot be avoided. They prefer to plant oil palm because of three main factors: (1) economic, (2) labor force, and (3) land area. Keywords: Oil palm; Land use Change; Integrated Assessment.


2020 ◽  
Vol 52 (1) ◽  
pp. 61
Author(s):  
Rossie Wiedya Nusantara ◽  
Sudarmadji Sudarmadji ◽  
Tjut S. Djohan ◽  
Eko Haryono

The conversion of tropical peat forest to other land uses can reduce organic carbon (C) and stable C isotope (δ13C) of peat soil. This research aimed at analyzing the soil organic-C and δ13C of peatland with respect to maturity (fibric, hemic and sapric) in five types of peatland use, which included primary peat forest, secondary peat forest, shrubs, oil palm plantations, and cornfield in West Kalimantan. Analysis of peat soil samples includes organic C with Loss in ignition method and δ13C  using an isotope ratio mass spectrometry(IRMS) method. Organic-C at fibric was higher than hemic and sapric, respectively (57.2%, 57.0%, 56.4%), meanwhile, organic-C was the highest on primary peat forest, followed by on secondary peat forest, oil palm plantation, cornfield, and shrubs, respectively 57.1%, 57.0%, 56.4%, 56.0%. The cause of increasing and decreasing organic C and δ13C due to land-use change due to changes in vegetation, burning during tillage, and age of organic matter of peat soil. This condition causes the opening of natural peat ecosystems and changes in anaerobic to aerobic conditions. 


Atmósfera ◽  
2015 ◽  
Vol 28 (4) ◽  
pp. 243-250 ◽  
Author(s):  
Faradiella Mohd Kusin ◽  
◽  
Nurul Izzati Mat Akhir ◽  
Ferdaus Mahamat-Yusuff ◽  
Muhamad Auang ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
pp. 1-13
Author(s):  
C. Chikere-Njoku

The study was conducted to investigate fertility status under four different land use types (oil palm plantation, pineapple orchard, cassava cultivated land and fallow land use system) in Umuekem, Ohaji/Egbema of Imo State, Nigeria. Composite samples were collected from various depths (10-15cm, 15-30cm, 30-45cm) across these land use patterns and analyzed in the laboratory using the standard procedure. Data generated were subjected to statistical analysis. Results obtained showed significant differences (p ≥ 0.05) in silt-clay ratio, bulk density, total porosity, water holding capacity, soil pH, organic carbon, available phosphorus, TN and ECEC across the four land use types studied. The soils were predominantly loamy sand surface and sandy clay loam in the subsoil exception of pineapple orchard with sandy loam topsoil over sandy clay loam subsoil. The silt clay ratio (SCR) showed ranges of 0.10-0.30, 0.10-0.36, 0.07 – 0.30, and 0.06- 0.20 in land use types of oil palm plantation, pineapple orchard, cassava cultivated land and fallow land respectively. The bulk density ranged of (1.61 – 1.77 g/cm3) for oil palm, (1.34 – 1.58 g/cm3) for pineapple (1.42 – 1.49 g/cm3) cassava and (1.45 – 1.48 g/cm3) in forest land use system. The soils of the four land use types were generally acidic. The mean values of soil pH (H20) were oil palm plantation (5.11), pineapple orchard (5.03), cassava cultivated land (5.35) and fallow land (5.40). The soil pH recorded low variation in all the land use types. The organic carbon and total nitrogen recorded high variation (>52.57% < 85.67%, >79.19 < 95.77) in all the different land use types. Calcium-magnesium ratio (Ca: Mg) recorded high variation (37.36%) in forest land use system, low variation (18.77%) in pineapple orchard and moderate in cassava (27.51%) and oil palm plantation (28.23). The low Ca: Mg ratio inhibits uptake and causes Ca deficiency thereby resulting in low fertility status of the soil. C: P recorded high variation (≥ 53.77% ≤ 77.73%) in all the studied land use types. O.C correlated positively and highly significant with available phosphorus, ECEC and T.N. The findings also indicated that bulk density correlated positively with ECEC and percentage base saturation. It is recommended that land use approach should be adopted for effective and sustainable management of the soil fertility. Keywords: Fertility status, Soils, Land use types


Author(s):  
Liselotte Schebek ◽  
Jan T. Mizgajski ◽  
Rüdiger Schaldach ◽  
Florian Wimmer

2018 ◽  
Vol 76 ◽  
pp. 828-838 ◽  
Author(s):  
Jonida Bou Dib ◽  
Vijesh V. Krishna ◽  
Zulkifli Alamsyah ◽  
Matin Qaim

2020 ◽  
Author(s):  
Alexander Röll ◽  
Florian Ellsäßer ◽  
Christian Stiegler ◽  
Tania June ◽  
Hendrayanto Hendrayanto ◽  
...  

&lt;p&gt;Evapotranspiration (ET) is a key flux in hydrological cycles; it is affected by both climate and land-use change. A recent study across 42 study sites in four land-use types in lowland Sumatra (Indonesia) reported that local and regional transpiration are on the rebound due to the high water use and continuing expansion of oil palm plantations. Conventional ET assessment methods such as satellite-based thermography or the eddy covariance (EC) technique lack the high spatial resolution and spatial replicability, respectively, that are required for ET assessments in dynamic and heterogeneous, mosaic-like landscapes. For such assessments of ET, near-surface airborne thermography offers new opportunities for studies with high numbers of spatial replicates and in a fine spatial resolution. In our study, we tested drone-based thermography and the subsequent application of three energy balance models (DATTUTDUT, TSEB-PT, DTD) using the widely accepted EC technique as a reference method. The study site was a mature oil palm plantation in lowland Sumatra. For 61 flight missions, latent heat flux estimates of the DATTUTDUT model with measured net radiation agreed well with eddy covariance measurements (r&amp;#178;=0.85; MAE=47; RMSE=60) across variable weather conditions and daytimes. Confidence intervals for slope and intercept of a Deming regression suggest no difference between drone-based and eddy covariance method, thus indicating interchangeability. TSEB-PT and DTD yielded agreeable results, but all three models are highly sensitive to the configuration in which net radiation is assessed. Overall, we conclude that drone-based thermography with energy-balance modeling is a reliable method complementing available methods for ET studies. It offers promising, additional opportunities for fine grain and spatially explicit studies. Further steps in the near future will include the testing and if necessary calibrating of the method across different biomes as well as ecological applications.&lt;/p&gt;


2014 ◽  
Vol 7 (6) ◽  
pp. 2545-2555 ◽  
Author(s):  
B. Bond-Lamberty ◽  
K. Calvin ◽  
A. D. Jones ◽  
J. Mao ◽  
P. Patel ◽  
...  

Abstract. Human activities are significantly altering biogeochemical cycles at the global scale, and the scope of these activities will change with both future climate and socioeconomic decisions. This poses a significant challenge for Earth system models (ESMs), which can incorporate land use change as prescribed inputs but do not actively simulate the policy or economic forces that drive land use change. One option to address this problem is to couple an ESM with an economically oriented integrated assessment model, but this is challenging because of the radically different goals and underpinnings of each type of model. This study describes the development and testing of a coupling between the terrestrial carbon cycle of an ESM (CESM) and an integrated assessment (GCAM) model, focusing on how CESM climate effects on the carbon cycle could be shared with GCAM. We examine the best proxy variables to share between the models, and we quantify how carbon flux changes driven by climate, CO2 fertilization, and land use changes (e.g., deforestation) can be distinguished from each other by GCAM. The net primary production and heterotrophic respiration outputs of the Community Land Model (CLM), the land component of CESM, were found to be the most robust proxy variables by which to recalculate GCAM's assumptions of equilibrium ecosystem steady-state carbon. Carbon cycle effects of land use change are spatially limited relative to climate effects, and thus we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. This paper does not present results of a fully coupled simulation but shows, using a series of offline CLM simulations and an additional idealized Monte Carlo simulation, that our CESM–GCAM proxy variables reflect the phenomena that we intend and do not contain erroneous signals due to land use change. By allowing climate effects from a full ESM to dynamically modulate the economic and policy decisions of an integrated assessment model, this work will help link these models in a robust and flexible framework capable of examining two-way interactions between human and Earth system processes.


Sign in / Sign up

Export Citation Format

Share Document