scholarly journals The Design of a Mini Plant Factory with Artificial Lighting and Application of Environmental Conditions Control System

Author(s):  
Ali Çaylı ◽  
Emir Hüseyin Kaya

Due to rapidly increasing population and urbanization, agricultural lands are shrinking. However, environmental problems and pollution are constantly increasing. This poses a threat to agricultural production and food access. In order to overcome these threats, the use of fully controlled indoor production systems called plant factory is becoming widespread. The management of plant nutrition and monitor of environmental conditions is very important for production in the plant factory. Plant production is sensitive to environmental conditions. For this reason, it is necessary to make accurate measurements in order to ensure the correct climatic conditions. The high cost of control systems designed for this purpose is a problem for producers. In this study, a mini plant factory prototype and control system are presented which is developed by using open source hardware and software. In addition, the temperature, relative humidity and light measured by the low-cost sensors were compared with the reference devices and the system performance and stability were investigated.

2021 ◽  
Author(s):  
Lynette Morgan

Abstract A plant factory is an indoor, enclosed, crop cultivation system where the growing environment is precisely controlled to maximise production. This control over all aspects of plant growth includes light, temperature, humidity, air movement, carbon dioxide (CO2) and nutrition. This is largely achieved through soilless (hydroponic) cultivation techniques. The term plant factory has previously included high intensity production systems such as greenhouses reliant on natural light only or natural light supplemented with horticultural lighting, as well as those utilising only artificial lighting. More recently, 'plant factory' has come to represent a CPPS (closed plant production system) or termed PFAL (plant factory with artificial lighting) where no natural sunlight is required. Plant factories may also be referred to as 'indoor vertical farms' or 'indoor vertical cropping' in the USA and other countries, based on the multi-level nature of the systems which aim to maximise growing space. With a high level of environmental control, plant factories can produce vegetables two to four times faster than by typical outdoor cultivation (Luna-Maldonao et al., 2016), and with the use of vertical systems, optimise yields per unit of floor area. In addition to higher levels of production, plant factories are becoming increasingly sustainable as less water, fertilizers, pesticides and labour are consumed during cultivation (Hu et al., 2014).


Author(s):  
Lynette Morgan

Abstract This chapter focuses on plant factories, which is an indoor, enclosed, crop cultivation system where the growing environment is precisely controlled to maximize production. Topics covered are the history and background of plant factories,advantages of plant factories, criticisms of plant factories, costs and returns of plant factories, domestic and other small-scale plant factories, crops produced including pharmaceuticals, vertical or multilevel systems, including moveable systems, crop nutrition in plant factories, plant factory environments, lighting, environmental control and plant quality in plant factories, and automation and robotization.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 723 ◽  
Author(s):  
Katsumi Ohyama ◽  
Junichi Yamaguchi ◽  
Ayumi Enjoji

New plant production systems with a low environmental impact (or a high resource utilization efficiency) are necessary for urban agriculture development. This study explores the benefits of closed plant production systems (CPPSs) with artificial lighting using a commercial CPPS at Osaka Prefecture University. Lettuce plants were produced continuously as a model for analyzing resource consumption rates, such as electricity, labor, water, and CO2, over two years. Monthly consumption rates of electricity, labor, water, and CO2 increased with the increase in the monthly production rate of the lettuce. The utilization efficiencies (=output/input) of electricity, energy, water, and CO2 were 1.0%, 1.0%, 4.0%, and 32.6%, respectively. If the commercial CPPS maintains the monthly production rate at a higher level, the energy utilization efficiency will increase. The number of air exchanges in a commercial CPPS should decrease to increase water and CO2 utilization efficiencies. Reusing water drained from the air conditioning system and employing a closed loop in the nutrient supply system also contribute to increasing the water utilization efficiency and lowering the environmental impact. Although a commercial CPPS still requires further improvements, it may be a good crop production system for urban agriculture provided resource utilization efficiencies improve.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3643 ◽  
Author(s):  
Abba ◽  
Namkusong ◽  
Lee ◽  
Crespo

Irrigation systems are becoming increasingly important, owing to the increase in human population, global warming, and food demand. This study aims to design a low-cost autonomous sensor interface to automate the monitoring and control of irrigation systems in remote locations, and to optimize water use for irrigation farming. An internet of things-based irrigation monitoring and control system, employing sensors and actuators, is designed to facilitate the autonomous supply of adequate water from a reservoir to domestic crops in a smart irrigation systems. System development lifecycle and waterfall model design methodologies have been employed in the development paradigm. The Proteus 8.5 design suite, Arduino integrated design environment, and embedded C programming language are commonly used to develop and implement a real working prototype. A pumping mechanism has been used to supply the water required by the soil. The prototype provides power supply, sensing, monitoring and control, and internet connectivity capabilities. Experimental and simulation results demonstrate the flexibility and practical applicability of the proposed system, and are of paramount importance, not only to farmers, but also for the expansion of economic activity. Furthermore, this system reduces the high level of supervision required to supply irrigation water, enabling remote monitoring and control.


Author(s):  
P. Valliappan ◽  
K. Jagiełło ◽  
S. J. Wilcox

The monitoring and control of combustion systems co-firing coal and biomass is a critical consideration when aiming to increase the proportion of biomass being combusted. This is because it is likely that the combustion will become increasingly unstable as the biomass proportion increases. In order to develop a flame monitoring and control system, flame signal data sets were collected from combustion measurements taken on a 500kW pilot scale combustion test facility. The sensors used were photodiodes with sensitivities in the UV, visible and IR wavelengths. The analysis of these data, identified flame features that can be related to operational parameters such as flame stability, excess air level, NOx and CO emissions. These features were then applied in the development of an intelligent flame monitoring and optimisation system for individual burners based on these low cost sensors. The testing of the monitoring and control system on a pilot scale burner and at full scale are described in this paper.


2013 ◽  
Vol 25 (2) ◽  
pp. 70-76 ◽  
Author(s):  
Minoru MASUDA ◽  
Masahide ISOZAKI ◽  
Ken SUZUKI ◽  
Nobuyuki KONISHI

Sign in / Sign up

Export Citation Format

Share Document