Natural Gas Liquids from the Associated Flare Gas Stream: Monetized in Real-Time via Various Qualitative Products

Author(s):  
Azunna I. B. Ekejiuba
Keyword(s):  
2021 ◽  
Author(s):  
Vadim Goryachikh ◽  
Fahad Alghamdi ◽  
Abdulrahman Takrouni

Abstract Background information Natural gas liquid (NGL) production facilities, typically, utilize turbo-expander-brake compressor (TE) to generate cold for C2+ separation from the natural gas by isentropic expansion of feed stream and use energy absorbed by expansion to compress residue gas. Experience shows that during operational phase TE can exposed to operation outside of design window that may lead to machine integrity loss and consequent impact on production. At the same time, there is a lack of performance indicators that help operator to monitor operating window of the machine and proactively identify performance deterioration. For instance, TE brake compressor side is always equipped with anti-surge protection system, including surge deviation alarms and trip. However, there is often gap in monitoring deviation from stonewall region. At the same time, in some of the designs (2×50% machines) likelihood of running brake compressor in stonewall is high during one machine trip or train start-up, turndown operating modes. Also, typical compressor performance monitoring systems does not have enough dynamic parameters that may indicate machine process process performance deterioration proactively (real-time calculation of actual polytrophic efficiency, absorbed power etc.) and help operator to take action before catastrophic failure occurs. In addition, typical compressor monitoring systems are based on assumed composition and fixed compressibility factor and do not reflect actual compositions variations that may affect machine performance monitoring. To overcome issues highlighted above, Hawiyah NGL (HNGL) team has developed computerized monitoring and advisory system to monitor the performance of turbo-expander-brake compressor, proactively, identify potentially unsafe conditions or performance deterioration and advice operators on taking necessary actions to avoid unscheduled deferment of production. Computerized performance monitoring system has been implemented in HNGL DCS (Yokogawa) and utilized by control room operators on day-to-day basis. Real-time calculation, analysis and outputs produced by performance monitoring system allow operator to understand how current operating condition are far from danger zone. Proactive deviation alarms and guide messages produce by the system in case of deviation help operators to control machine from entering unsafe region. Actual polytrophic efficiency, adsorbed power calculations provide machine condition status and allow identifying long-term performance deterioration trends.


2021 ◽  
Author(s):  
Graciela Eva Naveda ◽  
France Dominique Louie ◽  
Corinna Locatelli ◽  
Julien Davard ◽  
Sara Fragassi ◽  
...  

Abstract Natural gas has become one of the major sources of energy for homes, public buildings and businesses, therefore gas storage is particularly important to ensure continuous provision compensating the differences between supply and demand. Stogit, part of Snam group, has been carrying out gas storage activities since early 1960's. Natural gas is usually stored underground, in large storage reservoirs. The gas is injected into the porous rock of depleted reservoirs bringing the reservoir nearby to its original condition. Injected gas can be withdrawn depending on the need. Gas market demands for industries and homes in Italy are mostly guaranteed from those Stogit reservoirs even in periods when imports are in crisis. Typically, from April to October, the gas is injected in these natural reservoirs that are "geologically tested"; while from November to March, gas is extracted from the same reservoirs and pumped into the distribution networks to meet the higher consumer demand.  Thirty-eight (38) wells, across nine (9) depleted fields, are completed with downhole quartz gauges and some of them with fiber-optics gauges. Downhole gauges are installed to continuously measure and record temperature and pressure from multiple reservoirs. The Real Time data system installed for 29 wells is used to collect, transmit and make available downhole data to Stogit (Snam) headquarter office. Data is automatically collected from remote terminal units (RTUs) and transferred over Stogit (Snam) network. The entire system works autonomously and has the capability of being remotely managed from anywhere over the corporate Stogit (Snam) IT network. Historical trends, including fiber optics gauges ones, are visualized and data sets could be retrieved using a fast and user-friendly software that enables data import into interpretation and reservoir modeling software. The use of this data collection and transmission system, versus the traditional manual download, brought timely data delivery to multiple users, coupled with improved personnel safety since land travels were eliminated. The following pages describe the case study, lessons learned, and integrated new practices used to improve the current and future data transmission deployments.


2021 ◽  
Vol 281 ◽  
pp. 124759
Author(s):  
Omar J. Guerra ◽  
Brian Sergi ◽  
Michael Craig ◽  
Kwabena Addo Pambour ◽  
Carlo Brancucci ◽  
...  
Keyword(s):  

2014 ◽  
Vol 1048 ◽  
pp. 541-544
Author(s):  
Huan Huan Nie ◽  
Zhen Lu Wu ◽  
Guo Yan Yu

In this paper the structure of natural gas compressor monitoring system was designed. All the register data in PLC could be obtained to meet the real-time requirement by an instruction of PPI protocol. The technical framework of system was introduced simply, and the parameter method for measuring was put forward in fault diagnosis of natural gas compressor.


2016 ◽  
Vol 56 (2) ◽  
pp. 572
Author(s):  
Michael Little

Santos GLNG is a joint venture that supplies clean energy to global markets. The business produces natural gas from Queensland’s coal seams in the Bowen and Surat basins and converts it to liquefied natural gas (LNG) at its new facility on Curtis Island, near Gladstone, prior to export. From its inception, Santos GLNG has been committed to minimal impact and maximum efficiency, with safety before all else. Delivering on this commitment, in the context of a vast geographic footprint, required innovation—a new way of delivering traditional field operations. As a result, Santos GLNG successfully developed a high-tech $10 million operations centre that delivers the ability to centrally monitor the production and progress of its assets in the gas fields in real-time, 24 hours a day, seven days a week. Located in Brisbane (more than 450 km away from the gas fields), the centre comprises 90 large screens, one of the world’s largest touch screens, six simultaneous video conferencing facilities, and 30 km of wiring. Key benefits include: Real-time monitoring of the performance and production of all assets in the field, including compressors, pumps, wells, flow lines, pressure vessels, and pipelines. Remote start-up or shut-down capacity, which ensures facilities operate to the highest standards of production. Virtual collaboration and knowledge sharing across multiple sites and assets through the latest teleconference and video conferencing technology. In 2015, the operations centre successfully took control of a range of newly commissioned assets. Most notably, this included Santos GLNG’s three new major compression hubs, which together at nameplate capacity will be able to process 555 terajoules of gas per day.


2021 ◽  
Author(s):  
Pan Luo ◽  
Jonathan Harrist ◽  
Rabah Mesdour ◽  
Nathan Stmichel

Abstract Natural gas is sampled or produced throughout the lifespan of a field, including geochemical surface survey, mud gas logging, formation and well testing, and production. Detecting and measuring gas is a common practice in many upstream operations, providing gas composition and isotope data for multiple purposes, such as gas show, petroleum system analysis, fluid characterization, and production monitoring. Onsite gas analysis is usually conducted within a mud gas unit, which is operationally unavailable after drilling. Gas samples need be taken from the field and shipped back to laboratory for gas chromatography and isotope-ratio mass spectrometry analyses. Results take a considerable time and lack the resolution needed to fully characterize the heterogeneity and dynamics of fluids within the reservoir. We are developing and testing advanced sensing technology to move gas composition and isotope analyses to field for near real-time and onsite fluid characterization and monitoring. We have developed a novel QEPAS (quartz-enhanced photoacoustic spectroscopy) sensor system, employing a single interband cascade laser, to measure concentrations of methane (C1), ethane (C2), and propane (C3) in gas phase. The quartz fork detection module, laser driver, and interface are integrated as a small sensing box. The sensor, sample preparation enclosures and a computer are mounted in a rack as a gas analyzer prototype for the bench testing for oil industry application. Software is designed for monitoring sample preparation, collecting data, calibration and continuous reporting sample pressure and concentration data. The sensor achieved an ultimate detection limit of 90 ppb (parts per billion), 7 ppb and 3 ppm (parts per million) for C1, C2, and C3, respectively, for one second integration time. The detection limit for C2 made a record for QEPAS technique, and measuring C3 added a new capability to the technique. However, the linearity of the QEPAS sensing were previously reported in the range of 0 to 1000 ppm, which is mainly for trace gas detection. In the study, the prototype was separately tested on standard C1, C2, and C3 with different concentrations diluted in dry nitrogen (N2). Good linearity was obtained for all single components and the ranges of linearity were expanded to their typical concentrations (per cent, %) in natural gas samples from oil and gas fields. The testing on the C1-C2 mixtures confirms that accurate C1 and C2 concentrations in % level can be achieved by the prototype. The testing results on C1-C2-C3 mixtures demonstrate the capability of simultaneous detection of three hydrocarbon components and the probability to determine their precise concentrations by QEPAS sensing. This advancement of simultaneous measuring C1, C2 and C3 concentrations, with previously demonstrated capability for hydrogen sulfide (H2S) and carbon dioxide (CO2) and potential to analyze carbon isotopes (13C/12C), promotes QEPAS as a prominent optical technology for gas detection and chemical analysis. The capability of measuring multiple gas components and the advantages in small sensor size, high sensitivity, quick analysis, and continuous sensing (monitoring) open the way to use QEPAS technique for in-situ and real-time gas sensing in oil industry. The iterations of QEPAS sensor might be applied in geochemical survey, on-site fluid characterization, time-lapse monitoring of production, and gas linkage detection in the oil industry.


Sign in / Sign up

Export Citation Format

Share Document