Voices After Disaster

2021 ◽  
Author(s):  
Roger Few ◽  
Mythili Madhavan ◽  
Narayanan N.C. ◽  
Kaniska Singh ◽  
Hazel Marsh ◽  
...  

This document is an output from the “Voices After Disaster: narratives and representation following the Kerala floods of August 2018” project supported by the University of East Anglia (UEA)’s GCRF QR funds. The project is carried out by researchers at UEA, the Indian Institute for Human Settlements (IIHS), the Indian Institute of Technology (IIT), Bombay, and Canalpy, Kerala. In this briefing, we provide an overview of some of the emerging narratives of recovery in Kerala and discuss their significance for post-disaster recovery policy and practice. A key part of the work was a review of reported recovery activities by government and NGOs, as well as accounts and reports of the disaster and subsequent activities in the media and other information sources. This was complemented by fieldwork on the ground in two districts, in which the teams conducted a total of 105 interviews and group discussions with a range of community members and other local stakeholders. We worked in Alleppey district, in the low-lying Kuttanad region, where extreme accumulation of floodwaters had been far in excess of the normal seasonal levels, and in Wayanad district, in the Western Ghats, where there had been a concentration of severe flash floods and landslides.

Author(s):  
Douglass F. Taber

Kyungsoo Oh of Chung-Ang University cyclized (Org. Lett. 2015, 17, 450) the chloro enone 1 with NBS to the furan 2. Hongwei Zhou of Zhejiang University acylated (Adv. Synth. Catal. 2015, 357, 389) the imine 3, leading to the furan 4. H. Surya Prakash Rao of Pondicherry University found (Synlett 2014, 26, 1059) that under Blaise conditions, exposure of 5 to three equivalents of 6 led to the pyrrole 7. Yoshiaki Nishibayashi of the University of Tokyo and Yoshihiro Miyake, now at Nagoya University, prepared (Chem. Commun. 2014, 50, 8900) the pyrrole 10 by adding the silane 9 to the enone 8. Barry M. Trost of Stanford University developed (Org. Lett. 2015, 17, 1433) the phosphine-mediated cyclization of 11 to an intermediate that on brief exposure to a Pd catalyst was converted to the pyridine 12. Nagatoshi Nishiwaki of the Kochi University of Technology added (Chem. Lett. 2015, 44, 776) the dinitrolactam 14 to the enone 13 to give the pyridine 15. Metin Balci of the Middle East Technical University assembled (Org. Lett. 2015, 17, 964) the tricyclic pyridine 18 by adding propargyl amine 17 to the aldehyde 16. Chada Raji Reddy of the Indian Institute of Chemical Technology cyclized (Org. Lett. 2015, 17, 896) the azido enyne 19 to the pyridine 20 by simple exposure to I2. Björn C. G. Söderberg of West Virginia University used (J. Org. Chem. 2015, 80, 4783) a Pd catalyst to simultaneously reduce and cyclize 21 to the indole 22. Ranjan Jana of the Indian Institute of Chemical Biology effected (Org. Lett. 2015, 17, 672) sequential ortho C–H activation and cyclization, adding 23 to 24 to give the 2-substituted indole 25. In a complementary approach, Debabrata Maiti of the Indian Institute of Technology Bombay added (Chem. Eur. J. 2015, 21, 8723) 27 to 26 to give the 3-substituted indole 28. In a Type 8 construction, Nobutaka Fujii and Hiroaki Ohno of Kyoto University employed (Chem. Eur. J. 2015, 21, 1463) a gold catalyst to add 30 to 29, leading to 31.


Author(s):  
Douglass F. Taber

The catalytic reduction of the alkene 1 gave the cis-fused product (not illustrated), by kinetic H₂ addition to the less congested face of the alkene. Ryan A. Shenvi of Scripps La Jolla found (J. Am. Chem. Soc. 2014, 136, 1300) conditions for stepwise HAT, con­verting 1 to the thermodynamically-favored trans-fused ketone 2. Seth B. Herzon of Yale University devised (J. Am. Chem. Soc. 2014, 136, 6884) a protocol for the reduc­tion, mediated by 4, of the double bond of a haloalkene 3 to give the saturated halide 5. The Shenvi conditions also reduced a haloalkene to the saturated halide. Daniel J. Weix of the University of Rochester and Patrick L. Holland, also of Yale University, established (J. Am. Chem. Soc. 2014, 136, 945) conditions for the kinetic isomerization of a terminal alkene 6 to the Z internal alkene 7. Christoforos G. Kokotos of the University of Athens showed (J. Org. Chem. 2014, 79, 4270) that the ketone 9, used catalytically, markedly accelerated the Payne epoxidation of 8 to 10. Note that Helena M. C. Ferraz of the Universidade of São Paulo reported (Tetrahedron Lett. 2000, 41, 5021) several years ago that alkene epoxidation was also easily carried out with DMDO generated in situ from acetone and oxone. Theodore A. Betley of Harvard University prepared (Chem. Sci. 2014, 5, 1526) the allylic amine 12 by reacting the alkene 11 with 1-azidoadamantane in the presence of an iron catalyst. Rodney A. Fernandes of the Indian Institute of Technology Bombay developed (J. Org. Chem. 2014, 79, 5787) efficient conditions for the Wacker oxida­tion of a terminal alkene 6 to the methyl ketone 13. Yong-Qiang Wang of Northwest University oxidized (Org. Lett. 2014, 16, 1610) the alkene 6 to the enone 14. Peili Teo of the National University of Singapore devised (Chem. Commun. 2014, 50, 2608) conditions for the Markovnikov hydration of the alkene 6 to the alcohol 15. Internal alkenes were inert under these conditions, but Yoshikazo Kitano of the Tokyo University of Agriculture and Technology effected (Synthesis 2014, 46, 1455) the Markovnikov amination (not illustrated) of more highly substituted alkenes.


Author(s):  
Douglass F. Taber

Gojko Lalic of the University of Washington developed (Angew. Chem. Int. Ed. 2014, 53, 6473) conditions for the preparation of the fluoride 2 by SN2 displacement of the triflate 1. Ross M. Denton of the University of Nottingham showed (Tetrahedron Lett. 2014, 55, 799) that a polymer-bound phosphine oxide activated with oxalyl bromide would convert an alcohol 3 to the bromide 4. The polymer could be filtered off and reactivated directly. Jonas C. Peters and Gregory C. Fu of Caltech devised (J. Am. Chem. Soc. 2014, 136, 2162) a photochemically-activated Cu catalyst that mediated the displacement of the bromide 5 by the amide 6 to give 7. Mark L. Trudell of the University of New Orleans used (Synthesis 2014, 46, 230) an Ir catalyst to couple the amide 9 with the alcohol 8, leading to 10. Tohru Fukuyama of Nagoya University converted (Org. Lett. 2014, 16, 727) the unsaturated aldehyde 11 into the ester 12. As the transformation proceeded via proton­ation of the enolized acyl cyanide, the less stable diastereomer was formed kinetically. Brindaban C. Ranu of the Indian Association for the Cultivation of Science developed (Org. Lett. 2014, 16, 1040) conditions for the coupling of an alkenyl halide 13 with a phenol, leading to the vinyl ether 14. Inter alia, this would be a convenient way to hydrolyze an alkenyl halide to the aldehyde. Vinyl ethers can also be oxidized directly to the ester, and to the unsaturated aldehyde. Pallavi Sharma and John E. Moses of the University of Lincoln observed (Org. Lett. 2014, 16, 2158) that the cyanation of the alkenyl halide 15 delivered 16, with retention of the geometry of the alkene. Jitendra K. Bera of the Indian Institute of Technology Kanpur uncovered (Tetrahedron Lett. 2014, 55, 1444) “on water” conditions for the hydrolysis of a terminal alkyne 17 to the methyl ketone 18. Jiannan Xiang and Weimin He of Hunan University prepared (Eur. J. Org. Chem. 2014, 2668) the keto phosphonate 20 by hydrolysis of the alkynyl phosphonate 19. Ken-ichi Fujita of the National Institute of Advanced Industrial Science and Technology cyclized (Tetrahedron Lett. 2014, 55, 3013) the alkyne 21 with CO₂, leading to 22.


Author(s):  
Douglass Taber

François Morvan of the Université de Montpellier, using the inexpensive dimethyl phosphite, optimized (Tetrahedron Lett. 2008, 49, 3288) the free radical reduction of 1 to 2. Pawan K. Sharma of Kurukshetra University found (Tetrahedron Lett. 2008, 48, 8704) that NaBH4 in the presence of a catalytic amount of RuCl3.xH2 O reduced monosubstituted and disubstituted alkenes, such as 3, to the corresponding alkanes. Note that benzyl ethers were stable to these conditions. Ken Suzuki of Asahi Kasei Chemicals and Shun-Ichi Murahashi of Okayama University of Science established conditions (Angew. Chem. Int. Ed. 2008, 47, 2079) for the oxidation of primary amines such as 5 to oximes. Both ketoximes such as 6 and aldoximes were prepared using this protocol. Primary and secondary alcohols were stable to these conditions. Three noteworthy procedures for the oxidation of an aldehyde to the acid oxidation state were recently reported. Jonathan M. J. Williams of the University of Bath demonstrated (Chem. Commun. 2008, 624) that crotonitrile could serve as the hydrogen acceptor in the oxidation of an aldehyde 7 to the methyl ester 8. Note that isolated alkenes were stable to these conditions. Vikas N. Telvekar the University Institute of Chemical Technology, Mumbai improved (Tetrahedron Lett . 2008, 49, 2213) the oxidative amination of an aldehyde 9 to the nitrile 10. G. Sekar of the Indian Institute of Technology Madras effected (Tetrahedron Lett. 2008, 49, 1083) oxidation of an aldehyde 11 to the acid 12, under conditions that would be expected to not oxidize a primary or secondary alcohol. J. S. Yadav of the Indian Institute of Chemical Technology, Hyderabad observed (Tetrahedron Lett. 2008, 49, 3015) that the activation of a thiophenol 14 with N-chlorosuccimide generated a species that added regioselectively to a ketone 13 to give the thioether 15. Oxidation of the sulfide 15 followed by heating of the resulting sulfoxide would give the enone 16. This appears to be an easily scalable procedure. It is well known that an acid 17 and an amine 18 will condense at elevated temperature to give the amide 20.


Author(s):  
Douglass F. Taber

Sisir K. Mandal of Asian Paints R&T Centre, Mumbai used (Tetrahedron Lett. 2013, 54, 530) a Ru catalyst to couple 2 with an electron-rich arene 1 to give 3. Jun-ichi Yoshida of Kyoto University (J. Am. Chem. Soc. 2013, 135, 5000) and John F. Hartwig of the University of California, Berkeley (J. Am. Chem. Soc. 2013, 135, 8480) also reported direct amination protocols. Tommaso Marcelli of the Politecnico di Milano and Michael J. Ingleson of the University of Manchester effected (J. Am. Chem. Soc. 2013, 135, 474) the electrophilic borylation of the aniline 4 to give 5. The regioselectivity of Ir-catalyzed borylation (J. Am. Chem. Soc. 2013, 135, 7572; Org. Lett. 2013, 15, 140) is complementary to the electrophilic process. Professor Hartwig carried (Angew. Chem. Int. Ed. 2013, 52, 933) the borylated product from 6 onto Ni-mediated coupling to give the alkylated product 7. Weiping Su of the Fujian Institute of Research on the Structure of Matter devised (Org. Lett. 2013, 15, 1718) an intriguing Pd-mediated oxidative coupling of nitroethane 9 with 8 to give 10. The coupling is apparently not proceeding via nitroethylene. Peiming Gu of Ningxia University developed (Org. Lett. 2013, 15, 1124) an azide-based cleavage that converted the aldehyde 11 into the formamide 13. Zhong-Quan Liu of Lanzhou University showed (Tetrahedron Lett. 2013, 54, 3079) that an aromatic carboxylic acid 14 could be oxidatively decarboxylated to the chloride 15. Gérard Cahiez of the Université Paris 13 found (Adv. Synth. Catal. 2013, 355, 790) mild Cu-catalyzed conditions for the reductive decarboxylation of aromatic carboxylic acids, and Debabrata Maiti of the Indian Institute of Technology, Mumbai found (Chem. Commun. 2013, 49, 252) Pd-mediated conditions for the dehydroxymethylation of benzyl alcohols (neither illustrated). Pravin R. Likhar of the Indian Institute of Chemical Technology prepared (Adv. Synth. Catal. 2013, 355, 751) a Cu catalyst that effected Castro-Stephens coupling of 16 with 17 at room temperature. Arturo Orellana of York University (Chem. Commun. 2013, 49, 5420) and Patrick J. Walsh of the University of Pennsylvania (Org. Lett. 2013, 15, 2298) showed that a cyclopropanol 20 can couple with an aryl halide 19 to give 21.


Author(s):  
Douglass F. Taber

Manas K. Ghorai of the Indian Institute of Technology, Kanpur depended (J. Org. Chem. 2013, 78, 2311) on memory of chirality during deprotonation to convert 1 to the aziridine 3. X. Peter Zhang of the University of South Florida demonstrated (Angew. Chem. Int. Ed. 2013, 52, 5309) that Co-catalyzed enantioselective aziridination is compatible with fluoro-aromatics such as 5. David M. Hodgson of the University of Oxford prepared (J. Org. Chem. 2013, 78, 1098) the azetidine 8 by double deprotonation of 7 followed by acylation. Laurel L. Schafer of the University of British Columbia assembled (Org. Lett. 2013, 15, 2182) 11 by Ta-catalyzed aminoalkylation of 10 with 9, followed by cyclization. Nicholas A. Magnus of Eli Lilly reduced (J. Org. Chem. 2013, 78, 5768) the ketone 12 to the alcohol 13 with high de and ee. Pei-Qiang Huang of Xiamen University effected (J. Org. Chem. 2013, 78, 1790) the reductive addition of 14 to 15 to give 16. The titanocene protocol reported (Angew. Chem. Int. Ed. 2013, 52, 3494) by Xiao Zheng, also of Xiamen University, effectively mediated similar transformations. En route to (–)-quinocarcin, Nobutaka Fujii and Hiroaki Ohno of Kyoto University cyclized (Chem. Eur. J. 2013, 19, 8875) 17 to 18 with high diastereoselectivity. Dipolar cycloaddition, long a workhorse of pyrrolidine synthesis, has been improved by enantioselective organocatalysis. For instance, Liu-Zhu Gong of the University of Science and Technology of China combined (Org. Lett. 2013, 15, 2676) 19, 20, and 21 to give the triester 22. Qi-Lin Zhou of Nankai University reduced (Angew. Chem. Int. Ed. 2013, 52, 6072) the tetrahydropyridine 23 to 24 in high ee. Takaaki Sato and Noritaka Chida of Keio University cyclized (Chem. Eur. J. 2013, 19, 678) the intermediate from reduction of 25 to the piperidine 26. Yasumasa Hamada of Chiba University devised (Tetrahedron Lett. 2013, 54, 1562) the rearrangement of 27 to the piperidine 28. In a synthesis of (–)-hippodamine, Shigeo Katsumura of Kwansei Gakuin University used (Org. Lett. 2013, 15, 2758) the chiral auxiliary 29 to direct the combination of 30 with 31 to give 32.


Author(s):  
Douglass Taber

Tanmaya Pathak of the Indian Institute of Technology, Kharagpur devised (J. Org. Chem. 2009, 74, 2710) a preparation of enantiomerically-pure oxygenated cyclopropanes such as 3 from carbohydrate precursors. Andrei K. Yudin of the University of Toronto established (Organic Lett. 2009, 11, 1281) a route to aminated cyclobutanes such as 5 based on sigmatropic rearrangement of the β-lactam 4. Tanmaya Pathak of the Indian Institute of Technology, Kharagpur devised ( J. Org. Chem. 2009 , 74 , 2710) a preparation of enantiomerically-pure oxygenated cyclopropanes such as 3 from carbohydrate precursors. Andrei K. Yudin of the University of Toronto established (Organic Lett . 2009 , 11 , 1281) a route to aminated cyclobutanes such as 5 based on sigmatropic rearrangement of the β -lactam 4 . Stephen C. Bergmeier of Ohio University reported (Tetrahedron 2009, 65, 741) a study of the balance between five- and six-membered ring formation in the cyclization of aziridines such as 6. Professor Bergmeier also described (Tetrahedron Lett. 2009, 50, 1261) the bridging additions of enones to cyclic allyl silanes such as 8. This is particularly interesting, as 8 is easily prepared by Birch reduction of the corresponding phenyl silane. Ullrich Jahn of the Academy of Sciences of the Czech Republic observed (Chem. Eur. J. 2009, 15, 58) that the free-radical cyclization of 11 proceeded to give mainly the diastereomer 12 (~ 1:1 at the secondary allylic position). Daesung Lee of the University of Illinois at Chicago reasoned (J. Am. Chem. Soc. 2009, 131, 8413) that the stereochemical relationship between the O and the adjacent C-H of 13 was such that the C-H would be deactivated. The cyclization of the alkylidene carbene derived from 13 indeed proceeded to give 14, setting the stage for the synthesis of platensimycin. Marco A. Cufolini of the University of British Columbia found (Organic Lett . 2009, 11, 1539) an easy protocol for the generation of a nitrile oxide and subsequent dipolar cycloaddition, by oxidation of the oxime.


Author(s):  
Douglass F. Taber

James A. Bull of Imperial College London showed (Angew. Chem. Int. Ed. 2014, 53, 14230) that the malonate 1 could readily be cyclized to the oxetane 2. Davide Ravelli of the University of Pavia functionalized (Adv. Synth. Catal. 2014, 356, 2781) the α position of the oxetane 3 with 4, leading to 5. Frank Glorius of the Westfälische Wilhelms-Universität Münster hydrogenated (Angew. Chem. Int. Ed. 2014, 53, 8751) the furan 6 to give 7 in high ee. Jia-Rong Chen and Wen-Jing Xiao of Central China Normal University converted (Eur. J. Org. Chem. 2014, 4714) the initial Henry adduct from 8 into the cyclic ether 9. Anil K. Saikia of the Indian Institute of Technology, Guwahati cyclized (J. Org. Chem. 2014, 79, 8592) the ene–yne 10 to the ketone 11. Richard C. D. Brown of the University of Southampton developed (Org. Lett. 2014, 16, 5104) a chiral auxiliary that effectively directed the oxidative cyclization of the diene 12 to 13. The chiral auxiliary could be recovered and reused. K. A. Woerpel of New York University showed (Org. Lett. 2014, 16, 3684) that, depending on the solvent, 15 could be added to 14 to give either 16 or 17. Samuel J. Danishefsky of Columbia University and the Memorial Sloan-Kettering Cancer Center also observed (Chem. Eur. J. 2014, 20, 8731) a marked solvent effect on the diastereoselectivity of the reduction of 18 to 19. Xiaoming Feng of Sichuan University added (Chem. Eur. J. 2014, 20, 14493) the ketone 20 to Danishefsky’s diene 21 to give 22 in high ee. Jhillu Singh Yadav of the Indian Institute of Chemical Technology effected (Tetrahedron Lett. 2014, 55, 3996) intramolecular opening of the oxetane of 23 to give, with clean inversion, the cyclic ether 24. Chun-Yu Ho of the South University of Science and Technology, taking advan­tage (J. Org. Chem. 2014, 79, 11873) of the superior chelating ability of the allyl ether, selectively cyclized 25 to 26. Xuegong She of Lanzhou University used (Angew. Chem. Int. Ed. 2014, 53, 10789) a gold catalyst to convert 27 into the eight-membered ring ether 28.


Author(s):  
Douglass F. Taber

Govindasamy Sekar of the Indian Institute of Technology, Madras, developed ( Chem. Commun. 2011, 47, 5076) an environmentally friendly procedure for the amination of 1 to 2. Jens-Uwe Peters of Hoffmann-La Roche, Basel, showed (Tetrahedron Lett. 2011, 52, 749) that the Udenfriend protocol could be used to convert drugs such as 3 to their hydroxylated metabolites. Suman L. Jain and Anil K. Sinha of the Indian Institute of Petroleum reported (Chem. Commun. 2011, 47, 1610) complementary conditions for arene hydroxylation. Dimethyl aniline has been used, inter alia, as a nucleophile in enantioselective MacMillan conjugate addition. Zhong-Xia Wang of USTC established (Angew. Chem. Int. Ed. 2011, 50, 4901) that the quaternized salt 5 could participate in Negishi coupling. Mark R. Biscoe of the City College of New York discovered (Org. Lett. 2011, 13, 1218) that with a Ni catalyst, the secondary organozinc 9 will couple without rearrangement. Igor V. Alabugin of Florida State University devised (J. Org. Chem. 2011, 76, 1521) a radical-based protocol for replacing a phenolic OH with alkyl, to give 12. Petr Beier of the Academy of Sciences of the Czech Republic used (J. Org. Chem. 2011, 76, 4781) vicarious nucleophilic substitution followed by alkylation to convert 13 to 15. Robin B. Bedford of the University of Bristol developed (Angew. Chem. Int. Ed. 2011, 50, 5524) a Pd-catalyzed procedure for the ortho bromination of an anilide 16. Jin-Quan Yu of Scripps/La Jolla took advantage (J. Am. Chem. Soc. 2011, 133, 7652) of the energetic N-O bond of 19 to drive the functionalization of 18 to 20. Lei Liu of Tsinghua University devised (Org. Lett. 2011, 13, 3235) a Rh-mediated oxidative ortho coupling of the carbamate 21 with 22. Kohtaro Kirimura of Waseda University inserted (Chem. Lett. 2011, 40 , 206) the DNA for a novel Trichosporon decarboxylase into Escherichia coli and found that the resulting fermentation efficiently converted 24 into 25. The alternative Kolbe-Schmitt reaction requires high temperature and pressure. Sometimes, usually with more highly substituted benzene rings, creating the ring is worthwhile.


1962 ◽  
Vol 2 (4) ◽  
pp. 403-424 ◽  
Author(s):  
Sahib Ram Mandan

In continuation of the two previous papers (10; 11), this paper was originally written at the Indian Institute of Technology, Kharagpur and revised at the University of Sydney under the advice of Prof. T. G. Room. Although the altitudes of a general simplex S(A) in n-space (n > 2) do not concur as they do for a triangle (n = 2), yet we observe that its Monge point, M (1; 5), is an appropriate analogue of the orthocentre of a triangle such that M coincides with its orthocentre when it is orthogonal (or orthocentric). In consistency with the previous papers (10; 11; 13; 15) we shall call M as the S-point of S(A) and denote it as S as explained in § 1.2. The altitudes of S(A) are all met by the (n − 2)-spaces normal to its plane faces at their orthocentres, each parallel to of them, thus indicating the associated character of the altitudes as discussed separately in 2 other papers (12; 16). Before we introduce an orthogonal simplex and develop its properties in regard to its γ-altitudes and associated hyperspheres, we come across a number of intermediate ones of special interest. Two special types are treated here and the other two are developed in 2 other papers (13; 15).


Sign in / Sign up

Export Citation Format

Share Document