Heteroaromatic Construction: The Li Synthesis of Mycoleptodiscin A

Author(s):  
Douglass F. Taber

Kyungsoo Oh of Chung-Ang University cyclized (Org. Lett. 2015, 17, 450) the chloro enone 1 with NBS to the furan 2. Hongwei Zhou of Zhejiang University acylated (Adv. Synth. Catal. 2015, 357, 389) the imine 3, leading to the furan 4. H. Surya Prakash Rao of Pondicherry University found (Synlett 2014, 26, 1059) that under Blaise conditions, exposure of 5 to three equivalents of 6 led to the pyrrole 7. Yoshiaki Nishibayashi of the University of Tokyo and Yoshihiro Miyake, now at Nagoya University, prepared (Chem. Commun. 2014, 50, 8900) the pyrrole 10 by adding the silane 9 to the enone 8. Barry M. Trost of Stanford University developed (Org. Lett. 2015, 17, 1433) the phosphine-mediated cyclization of 11 to an intermediate that on brief exposure to a Pd catalyst was converted to the pyridine 12. Nagatoshi Nishiwaki of the Kochi University of Technology added (Chem. Lett. 2015, 44, 776) the dinitrolactam 14 to the enone 13 to give the pyridine 15. Metin Balci of the Middle East Technical University assembled (Org. Lett. 2015, 17, 964) the tricyclic pyridine 18 by adding propargyl amine 17 to the aldehyde 16. Chada Raji Reddy of the Indian Institute of Chemical Technology cyclized (Org. Lett. 2015, 17, 896) the azido enyne 19 to the pyridine 20 by simple exposure to I2. Björn C. G. Söderberg of West Virginia University used (J. Org. Chem. 2015, 80, 4783) a Pd catalyst to simultaneously reduce and cyclize 21 to the indole 22. Ranjan Jana of the Indian Institute of Chemical Biology effected (Org. Lett. 2015, 17, 672) sequential ortho C–H activation and cyclization, adding 23 to 24 to give the 2-substituted indole 25. In a complementary approach, Debabrata Maiti of the Indian Institute of Technology Bombay added (Chem. Eur. J. 2015, 21, 8723) 27 to 26 to give the 3-substituted indole 28. In a Type 8 construction, Nobutaka Fujii and Hiroaki Ohno of Kyoto University employed (Chem. Eur. J. 2015, 21, 1463) a gold catalyst to add 30 to 29, leading to 31.

Author(s):  
Douglass F. Taber

Adriaan J. Minnaard and Ben L. Feringa of the University of Groningen devised (J. Am. Chem. Soc. 2010, 132, 14349) what promises to be a general strategy for the construction of enantiomerically pure cyclopropanes, based on conjugate addition to acceptors such as 1 . X. Peter Zhang of the University of South Florida developed (J. Am. Chem. Soc. 2010, 132, 12796) a Co catalyst for the enantioselective cyclopropanation of α-olefins such as 3. Seiji Iwasa of Toyohashi University of Technology designed (Angew. Chem. Int. Ed. 2010, 49, 8439) a resin-bound Ru catalyst that could be used repeatedly for the enantioselective cyclization of the ester 6. Rai-Shung Lin of National Tsing-Hua University showed (Angew. Chem. Int. Ed. 2010, 49, 9891) that a gold catalyst could expand the alkyne 8 to the cyclobutene 9. Takao Ikariya of the Tokyo Institute of Technology reported (J. Am. Chem. Soc. 2010, 132, 16637) a detailed study of the enantioselective conjugate addition of malonate 11 to cyclopentenone 10. Vladimir A. D’yakonov of the Russian Academy of Sciences, Ufa, showed (Tetrahedron Lett. 2010, 51, 5886) that a cyclic alkyne 13 could be annulated to the cyclopentenone 14. Shunichi Hashimoto of Hokkaido University also designed (Angew. Chem. Int. Ed. 2010, 49, 6979) a resin-bound Rh catalyst that could also be used repeatedly for the enantioselective cyclization of the ester 15. Tushar Kanti Chakraborty of the Central Drug Research Institute used (Tetrahedron Lett. 2010, 51, 4425) Ti(III) to mediate the diastereoselective cyclization of 17 to 18. Alexandre Alexakis of the University of Geneva extended (Synlett 2010, 1694) enantioselective conjugate addition of isopropenyl to the more difficult enone 19. Joseph P. A. Harrity of the University of Sheffield showed (Org. Lett. 2010, 12, 4832) that Pd could catalyze the rearrangement of 21 to 22. Strategies for the controlled construction of polycyclic ring systems are also important. Günter Helmchen of the Universität Heidelberg showed (J. Org. Chem. 2010, 75, 7917) that 23 was efficiently cyclized to the diene with Pt catalyst. The reaction could be carried out in the presence of the dienophile 24 to give 25 directly.


Author(s):  
Douglass F. Taber

Mark Gandelman of the Technion–Israel Institute of Technology devised (Adv. Synth. Catal. 2011, 353, 1438) a protocol for the decarboxylative conversion of an acid 1 to the iodide 3. Doug E. Frantz of the University of Texas, San Antonio effected (Angew. Chem. Int. Ed. 2011, 50, 6128) conversion of a β-keto ester 4 to the diene 5 by way of the vinyl triflate. Pei Nian Liu of the East China University of Science and Technology and Chak Po Lau of the Hong Kong Polytechnic University (Adv. Synth. Catal. 2011, 353, 275) and Robert G. Bergman and Kenneth N. Raymond of the University of California, Berkeley (J. Am. Chem. Soc. 2011, 133, 11964) described new Ru catalysts for the isomerization of an allylic alcohol 6 to the ketone 7. Xiaodong Shi of West Virginia University optimized (Adv. Synth. Catal. 2011, 353, 2584) a gold catalyst for the rearrangement of a propargylic ester 8 to the enone 9. Xue-Yuan Liu of Lanzhou University used (Adv. Synth. Catal. 2011, 353, 3157) a Cu catalyst to add the chloramine 11 to the alkyne 10 to give 12. Kasi Pitchumani of Madurai Kamaraj University converted (Org. Lett. 2011, 13, 5728) the alkyne 13 into the α-amino amide 15 by reaction with the nitrone 14. Katsuhiko Tomooka of Kyushu University effected (J. Am. Chem. Soc. 2011, 133, 20712) hydrosilylation of the propargylic ether 16 to the alcohol 17. Matthew J. Cook of Queen’s University Belfast (Chem. Commun. 2011, 47, 11104) and Anna M. Costa and Jaume Vilarrasa of the Universitat de Barcelona (Org. Lett. 2011, 13, 4934) improved the conversion of an alkenyl silane 18 to the iodide 19. Vinay Girijavallabhan of Merck/Kenilworth developed (J. Org. Chem. 2011, 76, 6442) a Co catalyst for the Markovnikov addition of sulfide to an alkene 20. Hojat Veisi of Payame Noor University oxidized (Synlett 2011, 2315) the thiol 22 directly to the sulfonyl chloride 23. Nicholas M. Leonard of Abbott Laboratories prepared (J. Org. Chem. 2011, 76, 9169) the chromatography-stable O-Su ester 25 from the corresponding acid 24.


Author(s):  
Douglass F. Taber

James A. Bull of Imperial College London showed (Angew. Chem. Int. Ed. 2014, 53, 14230) that the malonate 1 could readily be cyclized to the oxetane 2. Davide Ravelli of the University of Pavia functionalized (Adv. Synth. Catal. 2014, 356, 2781) the α position of the oxetane 3 with 4, leading to 5. Frank Glorius of the Westfälische Wilhelms-Universität Münster hydrogenated (Angew. Chem. Int. Ed. 2014, 53, 8751) the furan 6 to give 7 in high ee. Jia-Rong Chen and Wen-Jing Xiao of Central China Normal University converted (Eur. J. Org. Chem. 2014, 4714) the initial Henry adduct from 8 into the cyclic ether 9. Anil K. Saikia of the Indian Institute of Technology, Guwahati cyclized (J. Org. Chem. 2014, 79, 8592) the ene–yne 10 to the ketone 11. Richard C. D. Brown of the University of Southampton developed (Org. Lett. 2014, 16, 5104) a chiral auxiliary that effectively directed the oxidative cyclization of the diene 12 to 13. The chiral auxiliary could be recovered and reused. K. A. Woerpel of New York University showed (Org. Lett. 2014, 16, 3684) that, depending on the solvent, 15 could be added to 14 to give either 16 or 17. Samuel J. Danishefsky of Columbia University and the Memorial Sloan-Kettering Cancer Center also observed (Chem. Eur. J. 2014, 20, 8731) a marked solvent effect on the diastereoselectivity of the reduction of 18 to 19. Xiaoming Feng of Sichuan University added (Chem. Eur. J. 2014, 20, 14493) the ketone 20 to Danishefsky’s diene 21 to give 22 in high ee. Jhillu Singh Yadav of the Indian Institute of Chemical Technology effected (Tetrahedron Lett. 2014, 55, 3996) intramolecular opening of the oxetane of 23 to give, with clean inversion, the cyclic ether 24. Chun-Yu Ho of the South University of Science and Technology, taking advan­tage (J. Org. Chem. 2014, 79, 11873) of the superior chelating ability of the allyl ether, selectively cyclized 25 to 26. Xuegong She of Lanzhou University used (Angew. Chem. Int. Ed. 2014, 53, 10789) a gold catalyst to convert 27 into the eight-membered ring ether 28.


2021 ◽  
Author(s):  
Roger Few ◽  
Mythili Madhavan ◽  
Narayanan N.C. ◽  
Kaniska Singh ◽  
Hazel Marsh ◽  
...  

This document is an output from the “Voices After Disaster: narratives and representation following the Kerala floods of August 2018” project supported by the University of East Anglia (UEA)’s GCRF QR funds. The project is carried out by researchers at UEA, the Indian Institute for Human Settlements (IIHS), the Indian Institute of Technology (IIT), Bombay, and Canalpy, Kerala. In this briefing, we provide an overview of some of the emerging narratives of recovery in Kerala and discuss their significance for post-disaster recovery policy and practice. A key part of the work was a review of reported recovery activities by government and NGOs, as well as accounts and reports of the disaster and subsequent activities in the media and other information sources. This was complemented by fieldwork on the ground in two districts, in which the teams conducted a total of 105 interviews and group discussions with a range of community members and other local stakeholders. We worked in Alleppey district, in the low-lying Kuttanad region, where extreme accumulation of floodwaters had been far in excess of the normal seasonal levels, and in Wayanad district, in the Western Ghats, where there had been a concentration of severe flash floods and landslides.


Author(s):  
Douglass F. Taber

Jaesook Yun of Sungkyunkwan University devised (J. Org. Chem. 2009, 74, 4232) a method, based on conjugate addition to a cyano alkyne, for the preparation of nitriles such as 1 with high geometric control. Enantioselective conjugate reduction then delivered the doubly arylated stereogenic center of 2 in high ee. Pher G. Andersson of Uppsala University described (J. Am. Chem. Soc. 2009, 131, 8855) a similar approach to diarylated ternary stereogenic centers. Motomu Kanai and Masakatsu Shibasaki of the University of Tokyo developed (J. Am. Chem. Soc. 2009, 131, 3858) a complementary approach to dialkylated stereogenic centers based on enantioselective conjugate cyanation of α-methylene N-acylpyrroles such as 3. Cathleen M. Crudden of Queen’s University established (J. Am. Chem. Soc. 2009, 131, 5024) that a benzylic organoborane, prepared by enantioselective hydroboration of styrene, coupled with an aryl iodide such as 6 in good yield and with > 90% retention of ee. Kwunmin Chen of National Taiwan Normal University devised ( Adv. Synth. Cat. 2009, 351, 1273) an organocatalyst for the enantioselective Michael addition of an α,α,-dialkyl aldehyde such as 9 to a nitroalkene. Wenhu Duan of the East China University of Science and Technology and Wei Wang of the University of New Mexico together developed (Organic Lett. 2009, 11, 2864) an organocatalyst for the enantioselective addition of nitromethane 12 to an unsaturated ketone such as 11. Xiaodong Shi of West Virginia University found (Angew. Chem. Int. Ed. 2009, 48, 1279) that commercial diphenyl prolinol effectively promoted enantioselective conjugate addition of 15 to 14. Enantioselective methods for the construction of alkylated quaternary centers have also been put forward. Kin-ichi Tadano of Keio University devised (Tetrahedron Lett. 2009, 50, 1139) a glucose-derived chiral auxiliary that effectively directed the absolute sense of the alkylation of 17. Li Deng of Brandeis University reported (Tetrahedron 2009, 65, 3139) further details of his elegant Cinchona -mediated conjugate addition of 19 to 20. Francesca Marini of the Università degli Studi di Perugia extended (Adv. Synth. Cat. 2009, 351, 103) this approach to selenones, effecting, over two steps, enantioselective vinylation.


IDEA JOURNAL ◽  
1969 ◽  
pp. 4-5
Author(s):  
Marina Lommerse

Interested Australian universities with Interior Design/Interior Architecture degrees held an inaugural meeting in Sydney in 1996 to elicit interest in an association to advocate Interior Design/Interior Architecture education and research. In 1997 IDEA was formalised to encourage and support excellence in the discipline. This is the Inaugural publication of the annual ‘IDEA Referred Design Scheme’, one of the activities the IDEA committee promotes. Participating universities include: Curtin University of Technology, Queensland College of Art, Queensland University of Technology, Northern Territory University, Royal Melbourne Institute of Technology, Swinburne University of Technology, University of New South Wales, University of South Australia and the University of Technology Sydney.


Author(s):  
Douglass F. Taber

The catalytic reduction of the alkene 1 gave the cis-fused product (not illustrated), by kinetic H₂ addition to the less congested face of the alkene. Ryan A. Shenvi of Scripps La Jolla found (J. Am. Chem. Soc. 2014, 136, 1300) conditions for stepwise HAT, con­verting 1 to the thermodynamically-favored trans-fused ketone 2. Seth B. Herzon of Yale University devised (J. Am. Chem. Soc. 2014, 136, 6884) a protocol for the reduc­tion, mediated by 4, of the double bond of a haloalkene 3 to give the saturated halide 5. The Shenvi conditions also reduced a haloalkene to the saturated halide. Daniel J. Weix of the University of Rochester and Patrick L. Holland, also of Yale University, established (J. Am. Chem. Soc. 2014, 136, 945) conditions for the kinetic isomerization of a terminal alkene 6 to the Z internal alkene 7. Christoforos G. Kokotos of the University of Athens showed (J. Org. Chem. 2014, 79, 4270) that the ketone 9, used catalytically, markedly accelerated the Payne epoxidation of 8 to 10. Note that Helena M. C. Ferraz of the Universidade of São Paulo reported (Tetrahedron Lett. 2000, 41, 5021) several years ago that alkene epoxidation was also easily carried out with DMDO generated in situ from acetone and oxone. Theodore A. Betley of Harvard University prepared (Chem. Sci. 2014, 5, 1526) the allylic amine 12 by reacting the alkene 11 with 1-azidoadamantane in the presence of an iron catalyst. Rodney A. Fernandes of the Indian Institute of Technology Bombay developed (J. Org. Chem. 2014, 79, 5787) efficient conditions for the Wacker oxida­tion of a terminal alkene 6 to the methyl ketone 13. Yong-Qiang Wang of Northwest University oxidized (Org. Lett. 2014, 16, 1610) the alkene 6 to the enone 14. Peili Teo of the National University of Singapore devised (Chem. Commun. 2014, 50, 2608) conditions for the Markovnikov hydration of the alkene 6 to the alcohol 15. Internal alkenes were inert under these conditions, but Yoshikazo Kitano of the Tokyo University of Agriculture and Technology effected (Synthesis 2014, 46, 1455) the Markovnikov amination (not illustrated) of more highly substituted alkenes.


Author(s):  
Douglass F. Taber

D. Srinivasa Reddy of the National Chemical Laboratory converted (Org. Lett. 2015, 17, 2090) the selenide 1 to the alkene 2 under ozonolysis conditions. Takamitsu Hosoya of the Tokyo Medical and Dental University found (Chem. Commun. 2015, 51, 8745) that even highly strained alkynes such as 4 can be generated from a sulfinyl vinyl triflate 3. An alkyne can be protected as the dicobalt hexacarbonyl complex. Joe B. Gilroy and Mark S. Workentin of the University of Western Ontario found (Chem. Commun. 2015, 51, 6647) that following click chemistry on a non-protected distal alkyne, deprotection of 5 to 6 could be effected by exposure to TMNO. Stefan Bräse of the Karlsruhe Institute of Technology and Irina A. Balova of Saint Petersburg State University showed (J. Org. Chem. 2015, 80, 5546) that the bend of the Co complex of 7 enabled ring-closing metathesis, leading after deprotection to 8. Morten Meldal of the University of Copenhagen devised (Eur. J. Org. Chem. 2015, 1433) 9, the base-labile protected form of the aldehyde 10. Nicholas Gathergood of Dublin City University and Stephen J. Connon of the University of Dublin developed (Eur. J. Org. Chem. 2015, 188) an imidazolium catalyst for the exchange deprotection of 11 to 13, with the inexpensive aldehyde 12 as the acceptor. Peter J. Lindsay-Scott of Eli Lilly demonstrated (Org. Lett. 2015, 17, 476) that on exposure to KF, the isoxa­zole 14 unraveled to the nitrile 15. Masato Kitamura of Nagoya University observed (Tetrahedron 2015, 71, 6559) that the allyl ester of 16 could be removed to give 17, with the other alkene not affected. Benzyl ethers are among the most common of alcohol protecting groups. Yongxiang Liu and Maosheng Cheng of Shenyang Pharmaceutical University showed (Adv. Synth. Catal. 2015, 357, 1029) that 18 could be converted to 19 simply by expo­sure to benzyl alcohol in the presence of a gold catalyst. Reko Leino of Åbo Akademi University developed (Synthesis 2015, 47, 1749) an iron catalyst for the reductive benzylation of 20 to 21. Related results (not illustrated) were reported (Org. Lett. 2015, 17, 1778) by Chae S. Yi of Marquette University.


Author(s):  
Douglass F. Taber

Gojko Lalic of the University of Washington developed (Angew. Chem. Int. Ed. 2014, 53, 6473) conditions for the preparation of the fluoride 2 by SN2 displacement of the triflate 1. Ross M. Denton of the University of Nottingham showed (Tetrahedron Lett. 2014, 55, 799) that a polymer-bound phosphine oxide activated with oxalyl bromide would convert an alcohol 3 to the bromide 4. The polymer could be filtered off and reactivated directly. Jonas C. Peters and Gregory C. Fu of Caltech devised (J. Am. Chem. Soc. 2014, 136, 2162) a photochemically-activated Cu catalyst that mediated the displacement of the bromide 5 by the amide 6 to give 7. Mark L. Trudell of the University of New Orleans used (Synthesis 2014, 46, 230) an Ir catalyst to couple the amide 9 with the alcohol 8, leading to 10. Tohru Fukuyama of Nagoya University converted (Org. Lett. 2014, 16, 727) the unsaturated aldehyde 11 into the ester 12. As the transformation proceeded via proton­ation of the enolized acyl cyanide, the less stable diastereomer was formed kinetically. Brindaban C. Ranu of the Indian Association for the Cultivation of Science developed (Org. Lett. 2014, 16, 1040) conditions for the coupling of an alkenyl halide 13 with a phenol, leading to the vinyl ether 14. Inter alia, this would be a convenient way to hydrolyze an alkenyl halide to the aldehyde. Vinyl ethers can also be oxidized directly to the ester, and to the unsaturated aldehyde. Pallavi Sharma and John E. Moses of the University of Lincoln observed (Org. Lett. 2014, 16, 2158) that the cyanation of the alkenyl halide 15 delivered 16, with retention of the geometry of the alkene. Jitendra K. Bera of the Indian Institute of Technology Kanpur uncovered (Tetrahedron Lett. 2014, 55, 1444) “on water” conditions for the hydrolysis of a terminal alkyne 17 to the methyl ketone 18. Jiannan Xiang and Weimin He of Hunan University prepared (Eur. J. Org. Chem. 2014, 2668) the keto phosphonate 20 by hydrolysis of the alkynyl phosphonate 19. Ken-ichi Fujita of the National Institute of Advanced Industrial Science and Technology cyclized (Tetrahedron Lett. 2014, 55, 3013) the alkyne 21 with CO₂, leading to 22.


Author(s):  
Douglass F. Taber

For a review of a monograph by C. Wiles and P. Watts on applications of flow reactors in organic synthesis, see Org. Process. Res. Dev. 2011, 15, 947. For a review by Klavs S. Jensen of MIT of flow approaches, see Angew. Chem. Int. Ed. 2011, 50, 7502. Hans-René Bjørsvik of the University of Bergen described (Org. Process. Res. Dev. 2011, 15, 997) a multijet oscillating disc microreactor, and Andreas Schmid of the Technische Universität Dortmund (Adv. Synth. Catal. 2011, 353, 2511) and László Poppe of the Budapest University of Technology and Economics discussed (Adv. Synth. Catal. 2011, 353, 2481) continuous flow reactors for biotransformations. Gases are readily handled in a flow apparatus. S. Chandrasekhar of the Indian Institute of Chemical Technology, Hyderabad demonstrated (Tetrahedron Lett. 2011, 52, 3865) partial deuteration of 1 to 2, using D2O as the deuterium source. Peter H. Seeberger of the Max Planck Institute, Potsdam oxidized (Org. Lett. 2011, 13, 5008) 3 to 4 with singlet oxygen. Dong-Pyo Kim of Chungnam National University and Robert H. Grubbs of Caltech effected (Org. Lett. 2011, 13, 2398) ethenolysis of 5 to give 6 and 7. Takashi Takahashi of the Tokyo Institute of Technology showed (Chem. Commun. 2011, 47, 12661) that even phosgene could be handled in a flow system, using it to activate 8 for condensation with benzylamine to give 9. In the liquid phase, Stephen L. Buchwald of MIT prepared (Angew. Chem. Int. Ed. 2011, 50, 8900) 11 by the fluorination of 10. Jesús Alcázar of Janssen Pharmaceutical, Toledo, showed (Tetrahedron Lett. 2011, 52, 6058) that a nitrile 12 could be reduced in a flow system to the aldehyde 13. Mark York of CSIRO prepared (Tetrahedron Lett. 2011, 52, 6267) the furan 16 by condensation of 14 with 15. Floris P.J.T. Rutjes of Radboud University Nijmegen used (Org. Process Res. Dev. 2011, 15, 783) the careful controls of a flow reactor to optimize the exothermic combination of 17 with 18 to give 19. Professor Buchwald demonstrated (Angew. Chem. Int. Ed. 2011, 50, 10665) a flow protocol for the lithiation of 20 with in situ borylation and Pd-catalyzed coupling with 21 to give 22.


Sign in / Sign up

Export Citation Format

Share Document