Sustainable Irrigation and Drainage IV

10.2495/si12 ◽  
2012 ◽  
2019 ◽  
Vol 50 (4) ◽  
pp. 198-207
Author(s):  
Ioannis Gravalos ◽  
Avgoustinos Avgousti ◽  
Theodoros Gialamas ◽  
Nikolaos Alfieris ◽  
Georgios Paschalidis

Water supply limits and continued population growth have intensified the search for measures to conserve water in urban gardening and agriculture. The efficiency of water use is depended on performance of the irrigation technologies and management practices. In this study, a robotic irrigation system was developed that consists of a moving bridge manipulator and a sensor-based platform. The manipulator constructed is partly using open-source components and software, and is easily reconfigurable and extendable. In combination to the sensor-based platform this custommade manipulator has the potential to monitor the soil water content (SWC) in real time. The irrigation robotic system was tested in an experimental soil tank. The total surface of the soil tank was divided by a raster into 18 equal quadrants. The water management for maintaining water content in the soil tank within tolerable lower limit (refill point) was based on three irrigation treatments: i) quadrants whose SWC is below the refill point are irrigated; ii) quadrants are irrigated only when the daily mean SWC of the tank is below the refill point and only for those whose actual SWC is lower than that limit; and iii) quadrants are irrigated every two days with constant amount of water. A comparison of the results of the three irrigation treatments showed that the second treatment gave less irrigation events and less applied water. Finally, we could conclude that the performance of the fabricated robotic system is appropriate and it could play an important role in achieving sustainable irrigation into urban food systems.


2021 ◽  
pp. 128048
Author(s):  
Henner Gimpel ◽  
Valerie Graf-Drasch ◽  
Florian Hawlitschek ◽  
Kathrin Neumeier

2010 ◽  
Vol 40 (10) ◽  
pp. 2218-2225 ◽  
Author(s):  
Rodrigo Otávio Câmara Monteiro ◽  
Jokastah Wanzuu Kalungu ◽  
Rubens Duarte Coelho

This paper reviews various irrigation technologies in both South Africa and Kenya that enable improvements in their socio-economic conditions. The two countries are located in semi-arid areas that experience extreme fluctuations in the availability of rain water for plant growth. Population growth exceeds the ability to produce food in numerous countries around the world and the two countries are not an exception. This experiment examined the constraints that farmers face and the role of government and nongovernmental organization in the uptake of modern technologies for irrigation. Detailed mechanisms and options to secure sustainable irrigation which are economically viable are considered. Despite the higher production of cereals and grains, fruits, and flowers also thrive in the two countries. Total irrigated area, crops grown and irrigation systems used in the two countries are discussed.


Author(s):  
Ganesh Das ◽  
Sankar Saha ◽  
F. H. Rahman ◽  
Surajit Sarkar ◽  
Sujan Biswas ◽  
...  

Terai region of West Bengal fall under high rainfall region but 90% rainfall occurs in kharif season and drought observed during rabi season.  NICRA project started in the Cooch Behar District during 2011. The project area and plan of work were selected on the basis of participatory rural appraisal method. The experimental trial was conducted from 2011 to 2019. The objective of the experiment was to development of sustainable irrigation system through renovation of pond and its impact on crop production. It was found from the study that pond renovation has potential impact on increasing crop yield, cropping intensity, copping system and area of irrigation.


2021 ◽  
Author(s):  
Zhipin Ai ◽  
Naota Hanasaki

<p>Bioenergy with carbon capture and storage (BECCS) plays a critical role in many stringent scenarios targeting the 2°C goal. Although irrigation is considered a promising way to enhance BECCS potential while reducing the land requirement, it is still unknown where and to what extent it can enhance the global BECCS potential in view of sustainable water use. Based on integrated hydrological simulations, we found that sustainable irrigation without intervention in water usage for other sectors and refrain from exploiting nonrenewable water sources enhanced BECCS potential by only 5–6% (much smaller than 60–71% for unlimited irrigation) above the rainfed potential by the end of this century. Nonetheless, it adds limited additional water withdrawal (166–298 km<sup>3</sup> yr<sup>-1</sup>, corresponding to only 4–7% of the current total withdrawal) compared to that with unlimited irrigation (1392–3929 km<sup>3</sup> yr<sup>-1</sup>, corresponding to 35–98% of the current total withdrawal).</p>


Sign in / Sign up

Export Citation Format

Share Document