scholarly journals Well-Structured Committees

Author(s):  
Sushmita Gupta ◽  
Pallavi Jain ◽  
Saket Saurabh

In the standard model of committee selection, we are given a set of ordinal votes over a set of candidates and a desired committee size, and the task is to select a committee that relates to the given votes. Motivated by possible interactions and dependencies between candidates, we study a generalization of committee selection in which the candidates are connected via a network and the task is to select a committee that relates to the given votes while also satisfy certain properties with respect to this candidate network. To accommodate certain correspondences to the voter preferences, we consider three standard voting rules (in particular, $k$-Borda, Chamberlin-Courant, and Gehrlein stability); to model different aspects of interactions and dependencies between candidates, we consider two graph properties (in particular, Independent Set and Connectivity). We study the parameterized complexity of the corresponding combinatorial problems and discuss certain implications of our algorithmic results.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Timothy Cohen ◽  
Nathaniel Craig ◽  
Xiaochuan Lu ◽  
Dave Sutherland

Abstract There are two canonical approaches to treating the Standard Model as an Effective Field Theory (EFT): Standard Model EFT (SMEFT), expressed in the electroweak symmetric phase utilizing the Higgs doublet, and Higgs EFT (HEFT), expressed in the broken phase utilizing the physical Higgs boson and an independent set of Goldstone bosons. HEFT encompasses SMEFT, so understanding whether SMEFT is sufficient motivates identifying UV theories that require HEFT as their low energy limit. This distinction is complicated by field redefinitions that obscure the naive differences between the two EFTs. By reformulating the question in a geometric language, we derive concrete criteria that can be used to distinguish SMEFT from HEFT independent of the chosen field basis. We highlight two cases where perturbative new physics must be matched onto HEFT: (i) the new particles derive all of their mass from electroweak symmetry breaking, and (ii) there are additional sources of electroweak symmetry breaking. Additionally, HEFT has a broader practical application: it can provide a more convergent parametrization when new physics lies near the weak scale. The ubiquity of models requiring HEFT suggests that SMEFT is not enough.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Yi Liao ◽  
Xiao-Dong Ma ◽  
Quan-Yu Wang

Abstract We present a complete and independent set of dimension-7 operators in the low energy effective field theory (LEFT) where the dynamical degrees of freedom are the standard model five quarks and all of the neutral and charged leptons. All operators are non-Hermitian and are classified according to their baryon (∆B) and lepton (∆L) numbers violated. Including Hermitian-conjugated operators, there are in total 3168, 750, 588, 712 operators with (∆B, ∆L) = (0, 0), (0, ±2), (±1, ∓1), (±1, ±1) respectively. We perform the tree-level matching with the standard model effective field theory (SMEFT) up to dimension-7 (dim-7) operators in both LEFT and SMEFT. As a phenomenological application we study the effective neutrino-photon interactions due to dim-7 lepton number violating operators that are induced and much enhanced at one loop from dim-6 operators that in turn are matched from dim-7 SMEFT operators. We compare various neutrino-photon scattering cross sections with their counterparts in the standard model and highlight the new features. Finally, we illustrate how these effective interactions could arise from ultraviolet completion.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2014 ◽  
Vol 36 (10) ◽  
pp. 2156-2167
Author(s):  
Qiang LI ◽  
Deng-Guo FENG ◽  
Li-Wu ZHANG ◽  
Zhi-Gang GAO

Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

The motivation for supersymmetry. The algebra, the superspace, and the representations. Field theory models and the non-renormalisation theorems. Spontaneous and explicit breaking of super-symmetry. The generalisation of the Montonen–Olive duality conjecture in supersymmetric theories. The remarkable properties of extended supersymmetric theories. A brief discussion of twisted supersymmetry in connection with topological field theories. Attempts to build a supersymmetric extention of the standard model and its experimental consequences. The property of gauge supersymmetry to include general relativity and the supergravity models.


Sign in / Sign up

Export Citation Format

Share Document