scholarly journals Dinkelbach-Type Algorithm for Computing Quantal Stackelberg Equilibrium

Author(s):  
Jakub Cerny ◽  
Viliam Lisý ◽  
Branislav Bošanský ◽  
Bo An

Stackelberg security games (SSGs) have been deployed in many real-world situations to optimally allocate scarce resource to protect targets against attackers. However, actual human attackers are not perfectly rational and there are several behavior models that attempt to predict subrational behavior. Quantal response is among the most commonly used such models and Quantal Stackelberg Equilibrium (QSE) describes the optimal strategy to commit to when facing a subrational opponent. Non-concavity makes computing QSE computationally challenging and while there exist algorithms for computing QSE for SSGs, they cannot be directly used for solving an arbitrary game in the normal form. We (1) present a transformation of the primal problem for computing QSE using a Dinkelbach's method for any general-sum normal-form game, (2) provide a gradient-based and a MILP-based algorithm, give the convergence criteria, and bound their error, and finally (3) we experimentally demonstrate that using our novel transformation, a QSE can be closely approximated several orders of magnitude faster.

2008 ◽  
Vol 98 (1) ◽  
pp. 180-200 ◽  
Author(s):  
Philip A Haile ◽  
Ali Hortaçsu ◽  
Grigory Kosenok

The quantal response equilibrium (QRE) notion of Richard D. McKelvey and Thomas R. Palfrey (1995) has recently attracted considerable attention, due in part to its widely documented ability to rationalize observed behavior in games played by experimental subjects. However, even with strong a priori restrictions on unobservables, QRE imposes no falsifiable restrictions: it can rationalize any distribution of behavior in any normal form game. After demonstrating this, we discuss several approaches to testing QRE under additional maintained assumptions. (JEL C72, D84)


Algorithmica ◽  
2019 ◽  
Vol 82 (5) ◽  
pp. 1189-1238 ◽  
Author(s):  
Stefano Coniglio ◽  
Nicola Gatti ◽  
Alberto Marchesi

AbstractThe search problem of computing a Stackelberg (or leader-follower)equilibrium (also referred to as an optimal strategy to commit to) has been widely investigated in the scientific literature in, almost exclusively, the single-follower setting. Although the optimistic and pessimistic versions of the problem, i.e., those where the single follower breaks any ties among multiple equilibria either in favour or against the leader, are solved with different methodologies, both cases allow for efficient, polynomial-time algorithms based on linear programming. The situation is different with multiple followers, where results are only sporadic and depend strictly on the nature of the followers’ game. In this paper, we investigate the setting of a normal-form game with a single leader and multiple followers who, after observing the leader’s commitment, play a Nash equilibrium. When both leader and followers are allowed to play mixed strategies, the corresponding search problem, both in the optimistic and pessimistic versions, is known to be inapproximable in polynomial time to within any multiplicative polynomial factor unless $$\textsf {P}=\textsf {NP}$$P=NP. Exact algorithms are known only for the optimistic case. We focus on the case where the followers play pure strategies—a restriction that applies to a number of real-world scenarios and which, in principle, makes the problem easier—under the assumption of pessimism (the optimistic version of the problem can be straightforwardly solved in polynomial time). After casting this search problem (with followers playing pure strategies) as a pessimistic bilevel programming problem, we show that, with two followers, the problem is -hard and, with three or more followers, it cannot be approximated in polynomial time to within any multiplicative factor which is polynomial in the size of the normal-form game, nor, assuming utilities in [0, 1], to within any constant additive loss stricly smaller than 1 unless $$\textsf {P}=\textsf {NP}$$P=NP. This shows that, differently from what happens in the optimistic version, hardness and inapproximability in the pessimistic problem are not due to the adoption of mixed strategies. We then show that the problem admits, in the general case, a supremum but not a maximum, and we propose a single-level mathematical programming reformulation which asks for the maximization of a nonconcave quadratic function over an unbounded nonconvex feasible region defined by linear and quadratic constraints. Since, due to admitting a supremum but not a maximum, only a restricted version of this formulation can be solved to optimality with state-of-the-art methods, we propose an exact ad hoc algorithm (which we also embed within a branch-and-bound scheme) capable of computing the supremum of the problem and, for cases where there is no leader’s strategy where such value is attained, also an $$\alpha $$α-approximate strategy where $$\alpha > 0$$α>0 is an arbitrary additive loss (at most as large as the supremum). We conclude the paper by evaluating the scalability of our algorithms via computational experiments on a well-established testbed of game instances.


2010 ◽  
Vol 389 (3) ◽  
pp. 481-489 ◽  
Author(s):  
Serge Galam ◽  
Bernard Walliser

Games ◽  
2013 ◽  
Vol 4 (3) ◽  
pp. 398-425 ◽  
Author(s):  
Torsten Heinrich ◽  
Henning Schwardt

Author(s):  
Qian Wang ◽  
Lucas Schmotzer ◽  
Yongwook Kim

<p>Structural designs of complex buildings and infrastructures have long been based on engineering experience and a trial-and-error approach. The structural performance is checked each time when a design is determined. An alternative strategy based on numerical optimization techniques can provide engineers an effective and efficient design approach. To achieve an optimal design, a finite element (FE) program is employed to calculate structural responses including forces and deformations. A gradient-based or gradient-free optimization method can be integrated with the FE program to guide the design iterations, until certain convergence criteria are met. Due to the iterative nature of the numerical optimization, a user programming is required to repeatedly access and modify input data and to collect output data of the FE program. In this study, an approximation method was developed so that the structural responses could be expressed as approximate functions, and that the accuracy of the functions could be adaptively improved. In the method, the FE program was not required to be directly looped in the optimization iterations. As a practical illustrative example, a 3D reinforced concrete building structure was optimized. The proposed method worked very well and optimal designs were found to reduce the torsional responses of the building.</p>


2019 ◽  
Vol 21 (02) ◽  
pp. 1940011
Author(s):  
Thomas A. Weber

To quantify a player’s commitment in a given Nash equilibrium of a finite dynamic game, we map the corresponding normal-form game to a “canonical extension,” which allows each player to adjust his or her move with a certain probability. The commitment measure relates to the average overall adjustment probabilities for which the given Nash equilibrium can be implemented as a subgame-perfect equilibrium in the canonical extension.


Author(s):  
Alberto Marchesi ◽  
Gabriele Farina ◽  
Christian Kroer ◽  
Nicola Gatti ◽  
Tuomas Sandholm

Equilibrium refinements are important in extensive-form (i.e., tree-form) games, where they amend weaknesses of the Nash equilibrium concept by requiring sequential rationality and other beneficial properties. One of the most attractive refinement concepts is quasi-perfect equilibrium. While quasiperfection has been studied in extensive-form games, it is poorly understood in Stackelberg settings—that is, settings where a leader can commit to a strategy—which are important for modeling, for example, security games. In this paper, we introduce the axiomatic definition of quasi-perfect Stackelberg equilibrium. We develop a broad class of game perturbation schemes that lead to them in the limit. Our class of perturbation schemes strictly generalizes prior perturbation schemes introduced for the computation of (non-Stackelberg) quasi-perfect equilibria. Based on our perturbation schemes, we develop a branch-and-bound algorithm for computing a quasi-perfect Stackelberg equilibrium. It leverages a perturbed variant of the linear program for computing a Stackelberg extensive-form correlated equilibrium. Experiments show that our algorithm can be used to find an approximate quasi-perfect Stackelberg equilibrium in games with thousands of nodes.


Sign in / Sign up

Export Citation Format

Share Document