scholarly journals PATCHCOMM: Using Commonsense Knowledge to Guide Syntactic Parsers

2021 ◽  
Author(s):  
Yida Xin ◽  
Henry Lieberman ◽  
Peter Chin

Syntactic parsing technologies have become significantly more robust thanks to advancements in their underlying statistical and Deep Neural Network (DNN) techniques: most modern syntactic parsers can produce a syntactic parse tree for almost any sentence, including ones that may not be strictly grammatical. Despite improved robustness, such parsers still do not reflect the alternatives in parsing that are intrinsic in syntactic ambiguities. Two most notable such ambiguities are prepositional phrase (PP) attachment ambiguities and pronoun coreference ambiguities. In this paper, we discuss PatchComm, which uses commonsense knowledge to help resolve both kinds of ambiguities. To the best of our knowledge, we are the first to propose the general-purpose approach of using external commonsense knowledge bases to guide syntactic parsers. We evaluated PatchComm against the state-of-the-art (SOTA) spaCy parser on a PP attachment task and against the SOTA NeuralCoref module on a coreference task. Results show that PatchComm is successful at detecting syntactic ambiguities and using commonsense knowledge to help resolve them.

Author(s):  
Hongrui Zhao ◽  
Jin Yu ◽  
Yanan Li ◽  
Donghui Wang ◽  
Jie Liu ◽  
...  

Nowadays, both online shopping and video sharing have grown exponentially. Although internet celebrities in videos are ideal exhibition for fashion corporations to sell their products, audiences do not always know where to buy fashion products in videos, which is a cross-domain problem called video-to-shop. In this paper, we propose a novel deep neural network, called Detect, Pick, and Retrieval Network (DPRNet), to break the gap between fashion products from videos and audiences. For the video side, we have modified the traditional object detector, which automatically picks out the best object proposals for every commodity in videos without duplication, to promote the performance of the video-to-shop task. For the fashion retrieval side, a simple but effective multi-task loss network obtains new state-of-the-art results on DeepFashion. Extensive experiments conducted on a new large-scale cross-domain video-to-shop dataset shows that DPRNet is efficient and outperforms the state-of-the-art methods on video-to-shop task.


Author(s):  
Yunfei Fu ◽  
Hongchuan Yu ◽  
Chih-Kuo Yeh ◽  
Tong-Yee Lee ◽  
Jian J. Zhang

Brushstrokes are viewed as the artist’s “handwriting” in a painting. In many applications such as style learning and transfer, mimicking painting, and painting authentication, it is highly desired to quantitatively and accurately identify brushstroke characteristics from old masters’ pieces using computer programs. However, due to the nature of hundreds or thousands of intermingling brushstrokes in the painting, it still remains challenging. This article proposes an efficient algorithm for brush Stroke extraction based on a Deep neural network, i.e., DStroke. Compared to the state-of-the-art research, the main merit of the proposed DStroke is to automatically and rapidly extract brushstrokes from a painting without manual annotation, while accurately approximating the real brushstrokes with high reliability. Herein, recovering the faithful soft transitions between brushstrokes is often ignored by the other methods. In fact, the details of brushstrokes in a master piece of painting (e.g., shapes, colors, texture, overlaps) are highly desired by artists since they hold promise to enhance and extend the artists’ powers, just like microscopes extend biologists’ powers. To demonstrate the high efficiency of the proposed DStroke, we perform it on a set of real scans of paintings and a set of synthetic paintings, respectively. Experiments show that the proposed DStroke is noticeably faster and more accurate at identifying and extracting brushstrokes, outperforming the other methods.


Recently, DDoS attacks is the most significant threat in network security. Both industry and academia are currently debating how to detect and protect against DDoS attacks. Many studies are provided to detect these types of attacks. Deep learning techniques are the most suitable and efficient algorithm for categorizing normal and attack data. Hence, a deep neural network approach is proposed in this study to mitigate DDoS attacks effectively. We used a deep learning neural network to identify and classify traffic as benign or one of four different DDoS attacks. We will concentrate on four different DDoS types: Slowloris, Slowhttptest, DDoS Hulk, and GoldenEye. The rest of the paper is organized as follow: Firstly, we introduce the work, Section 2 defines the related works, Section 3 presents the problem statement, Section 4 describes the proposed methodology, Section 5 illustrate the results of the proposed methodology and shows how the proposed methodology outperforms state-of-the-art work and finally Section VI concludes the paper.


2021 ◽  
Author(s):  
Anh Nguyen ◽  
Khoa Pham ◽  
Dat Ngo ◽  
Thanh Ngo ◽  
Lam Pham

This paper provides an analysis of state-of-the-art activation functions with respect to supervised classification of deep neural network. These activation functions comprise of Rectified Linear Units (ReLU), Exponential Linear Unit (ELU), Scaled Exponential Linear Unit (SELU), Gaussian Error Linear Unit (GELU), and the Inverse Square Root Linear Unit (ISRLU). To evaluate, experiments over two deep learning network architectures integrating these activation functions are conducted. The first model, basing on Multilayer Perceptron (MLP), is evaluated with MNIST dataset to perform these activation functions.Meanwhile, the second model, likely VGGish-based architecture, is applied for Acoustic Scene Classification (ASC) Task 1A in DCASE 2018 challenge, thus evaluate whether these activation functions work well in different datasets as well as different network architectures.


2020 ◽  
Vol 34 (04) ◽  
pp. 3858-3865
Author(s):  
Huijie Feng ◽  
Chunpeng Wu ◽  
Guoyang Chen ◽  
Weifeng Zhang ◽  
Yang Ning

Recently smoothing deep neural network based classifiers via isotropic Gaussian perturbation is shown to be an effective and scalable way to provide state-of-the-art probabilistic robustness guarantee against ℓ2 norm bounded adversarial perturbations. However, how to train a good base classifier that is accurate and robust when smoothed has not been fully investigated. In this work, we derive a new regularized risk, in which the regularizer can adaptively encourage the accuracy and robustness of the smoothed counterpart when training the base classifier. It is computationally efficient and can be implemented in parallel with other empirical defense methods. We discuss how to implement it under both standard (non-adversarial) and adversarial training scheme. At the same time, we also design a new certification algorithm, which can leverage the regularization effect to provide tighter robustness lower bound that holds with high probability. Our extensive experimentation demonstrates the effectiveness of the proposed training and certification approaches on CIFAR-10 and ImageNet datasets.


2021 ◽  
Author(s):  
Noor Ahmad ◽  
Muhammad Aminu ◽  
Mohd Halim Mohd Noor

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.


Author(s):  
FRANCK LECLERC ◽  
RÉJEAN PLAMONDON

This paper is a follow up to an article published in 1989 by R. Plamondon and G. Lorette on the state of the art in automatic signature verification and writer identification. It summarizes the activity from year 1989 to 1993 in automatic signature verification. For this purpose, we report on the different projects dealing with dynamic, static and neural network approaches. In each section, a brief description of the major investigations is given.


2021 ◽  
Author(s):  
Muhammad Shahroz Nadeem ◽  
Sibt Hussain ◽  
Fatih Kurugollu

This paper solves the textual deblurring problem, In this paper we propose a new loss function, we provide empirical evaluation of the design choices based on which a memory friendly CNN model is proposed, that performs better then the state of the art CNN method.


Author(s):  
Chenggang Yan ◽  
Tong Teng ◽  
Yutao Liu ◽  
Yongbing Zhang ◽  
Haoqian Wang ◽  
...  

The difficulty of no-reference image quality assessment (NR IQA) often lies in the lack of knowledge about the distortion in the image, which makes quality assessment blind and thus inefficient. To tackle such issue, in this article, we propose a novel scheme for precise NR IQA, which includes two successive steps, i.e., distortion identification and targeted quality evaluation. In the first step, we employ the well-known Inception-ResNet-v2 neural network to train a classifier that classifies the possible distortion in the image into the four most common distortion types, i.e., Gaussian white noise (WN), Gaussian blur (GB), jpeg compression (JPEG), and jpeg2000 compression (JP2K). Specifically, the deep neural network is trained on the large-scale Waterloo Exploration database, which ensures the robustness and high performance of distortion classification. In the second step, after determining the distortion type of the image, we then design a specific approach to quantify the image distortion level, which can estimate the image quality specially and more precisely. Extensive experiments performed on LIVE, TID2013, CSIQ, and Waterloo Exploration databases demonstrate that (1) the accuracy of our distortion classification is higher than that of the state-of-the-art distortion classification methods, and (2) the proposed NR IQA method outperforms the state-of-the-art NR IQA methods in quantifying the image quality.


Author(s):  
Jian Guan ◽  
Fei Huang ◽  
Zhihao Zhao ◽  
Xiaoyan Zhu ◽  
Minlie Huang

Story generation, namely, generating a reasonable story from a leading context, is an important but challenging task. In spite of the success in modeling fluency and local coherence, existing neural language generation models (e.g., GPT-2) still suffer from repetition, logic conflicts, and lack of long-range coherence in generated stories. We conjecture that this is because of the difficulty of associating relevant commonsense knowledge, understanding the causal relationships, and planning entities and events with proper temporal order. In this paper, we devise a knowledge-enhanced pretraining model for commonsense story generation. We propose to utilize commonsense knowledge from external knowledge bases to generate reasonable stories. To further capture the causal and temporal dependencies between the sentences in a reasonable story, we use multi-task learning, which combines a discriminative objective to distinguish true and fake stories during fine-tuning. Automatic and manual evaluation shows that our model can generate more reasonable stories than state-of-the-art baselines, particularly in terms of logic and global coherence.


Sign in / Sign up

Export Citation Format

Share Document