scholarly journals Some Properties of D-Operator on Hilbert Space

2020 ◽  
pp. 3366-3371
Author(s):  
Eiman Al-janabi

In this paper, we introduce a new type of Drazin invertible operator on Hilbert spaces, which is called D-operator. Then, some properties of the class of D-operators are studied. We prove that the D-operator preserves the scalar product, the unitary equivalent property, the product and sum of two D-operators are not D-operator in general but the direct product and tenser product is also D-operator.

1973 ◽  
Vol 16 (2) ◽  
pp. 239-244
Author(s):  
M. A. Malik

Let H be a Hilbert space; ( , ) and | | represent the scalar product and the norm respectively in H. Let A be a closed linear operator with domain DA dense in H and A* be its adjoint with domain DA*. DA and DA*are also Hilbert spaces under their respective graph scalar product. R(λ; A*) denotes the resolvent of A*; complex plane. We write L = D — A, L* = D — A*; D = (l/i)(d/dt).


2006 ◽  
Vol 13 (03) ◽  
pp. 239-253 ◽  
Author(s):  
V. I. Man'ko ◽  
G. Marmo ◽  
A. Simoni ◽  
F. Ventriglia

The tomographic description of a quantum state is formulated in an abstract infinite-dimensional Hilbert space framework, the space of the Hilbert-Schmidt linear operators, with trace formula as scalar product. Resolutions of the unity, written in terms of over-complete sets of rank-one projectors and of associated Gram-Schmidt operators taking into account their non-orthogonality, are then used to reconstruct a quantum state from its tomograms. Examples of well known tomographic descriptions illustrate the exposed theory.


1975 ◽  
Vol 18 (3) ◽  
pp. 379-382
Author(s):  
M. A. Malik

Let Ω be an open subset of R and H be a complex Hilbert space; (,) represents scalar product in H.Let also A be a closed linear operator with domain DA dense in H and A* with domain D*A be its adjoint. Under graph scalar product DA and D*A are also Hilbert spaces.


Author(s):  
Ulaş Yamancı ◽  
Mehmet Gürdal

A reproducing kernel Hilbert space (shorty, RKHS) H=H(Ω) on some set Ω is a Hilbert space of complex valued functions on Ω such that for every λ∈Ω the linear functional (evaluation functional) f→f(λ) is bounded on H. If H is RKHS on a set Ω, then, by the classical Riesz representation theorem for every λ∈Ω there is a unique element kH,λ∈H such that f(λ)=〈f,kH,λ〉; for all f∈H. The family {kH,λ:λ∈Ω} is called the reproducing kernel of the space H. The Berezin set and the Berezin number of the operator A was respectively given by Karaev in [26] as following Ber(A)={A(λ):λ∈Ω} and ber(A):=|A(λ)|. In this chapter, the authors give the Berezin number inequalities for an invertible operator and some other related results are studied. Also, they obtain some inequalities of the slater type for convex functions of selfadjoint operators in reproducing kernel Hilbert spaces and examine related results.


Author(s):  
Joachim Toft ◽  
Anupam Gumber ◽  
Ramesh Manna ◽  
P. K. Ratnakumar

AbstractLet $$\mathcal H$$ H be a Hilbert space of distributions on $$\mathbf{R}^{d}$$ R d which contains at least one non-zero element of the Feichtinger algebra $$S_0$$ S 0 and is continuously embedded in $$\mathscr {D}'$$ D ′ . If $$\mathcal H$$ H is translation and modulation invariant, also in the sense of its norm, then we prove that $$\mathcal H= L^2$$ H = L 2 , with the same norm apart from a multiplicative constant.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Sung-Sik Lee

Abstract Einstein’s theory of general relativity is based on the premise that the physical laws take the same form in all coordinate systems. However, it still presumes a preferred decomposition of the total kinematic Hilbert space into local kinematic Hilbert spaces. In this paper, we consider a theory of quantum gravity that does not come with a preferred partitioning of the kinematic Hilbert space. It is pointed out that, in such a theory, dimension, signature, topology and geometry of spacetime depend on how a collection of local clocks is chosen within the kinematic Hilbert space.


2001 ◽  
Vol 16 (02) ◽  
pp. 91-98 ◽  
Author(s):  
JULES BECKERS ◽  
NATHALIE DEBERGH ◽  
JOSÉ F. CARIÑENA ◽  
GIUSEPPE MARMO

Previous λ-deformed non-Hermitian Hamiltonians with respect to the usual scalar product of Hilbert spaces dealing with harmonic oscillator-like developments are (re)considered with respect to a new scalar product in order to take into account their property of self-adjointness. The corresponding deformed λ-states lead to new families of coherent states according to the DOCS, AOCS and MUCS points of view.


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Nicola Arcozzi ◽  
Pavel Mozolyako ◽  
Karl-Mikael Perfekt ◽  
Stefan Richter ◽  
Giulia Sarfatti

AbstractWe study the reproducing kernel Hilbert space with kernel k


2008 ◽  
Vol 60 (5) ◽  
pp. 1001-1009 ◽  
Author(s):  
Yves de Cornulier ◽  
Romain Tessera ◽  
Alain Valette

AbstractOur main result is that a finitely generated nilpotent group has no isometric action on an infinite-dimensional Hilbert space with dense orbits. In contrast, we construct such an action with a finitely generated metabelian group.


Sign in / Sign up

Export Citation Format

Share Document