Uniqueness of Generalized Solutions of Abstract Differential Equations

1975 ◽  
Vol 18 (3) ◽  
pp. 379-382
Author(s):  
M. A. Malik

Let Ω be an open subset of R and H be a complex Hilbert space; (,) represents scalar product in H.Let also A be a closed linear operator with domain DA dense in H and A* with domain D*A be its adjoint. Under graph scalar product DA and D*A are also Hilbert spaces.

1973 ◽  
Vol 16 (2) ◽  
pp. 239-244
Author(s):  
M. A. Malik

Let H be a Hilbert space; ( , ) and | | represent the scalar product and the norm respectively in H. Let A be a closed linear operator with domain DA dense in H and A* be its adjoint with domain DA*. DA and DA*are also Hilbert spaces under their respective graph scalar product. R(λ; A*) denotes the resolvent of A*; complex plane. We write L = D — A, L* = D — A*; D = (l/i)(d/dt).


2018 ◽  
Vol 64 (1) ◽  
pp. 194-210
Author(s):  
A Favini ◽  
G Marinoschi ◽  
H Tanabe ◽  
Ya Yakubov

In a Hilbert space X, we consider the abstract problem M∗ddt(My(t))=Ly(t)+f(t)z,0≤t≤τ,My(0)=My0, where L is a closed linear operator in X and M∈L(X) is not necessarily invertible, z∈X. Given the additional information Φ[My(t)]=g(t) wuth Φ∈X∗, g∈C1([0,τ];C). We are concerned with the determination of the conditions under which we can identify f∈C([0,τ];C) such that y be a strict solution to the abstract problem, i.e., My∈C1([0,τ];X), Ly∈C([0,τ];X). A similar problem is considered for general second order equations in time. Various examples of these general problems are given.


2001 ◽  
Vol 6 (8) ◽  
pp. 489-499 ◽  
Author(s):  
Y. S. Eidelman ◽  
I. V. Tikhonov

LetAbe a closed linear operator on a Banach spaceE. We study periodic solutions of the differential equationd Nu (t)/dt N=A u(t)with an arbitrary integerN≥1.


1965 ◽  
Vol 17 ◽  
pp. 1030-1040 ◽  
Author(s):  
Earl A. Coddington

The domain and null space of an operator A in a Hilbert space will be denoted by and , respectively. A formally normal operatorN in is a densely defined closed (linear) operator such that , and for all A normal operator in is a formally normal operator N satisfying 35 . A study of the possibility of extending a formally normal operator N to a normal operator in the given , or in a larger Hilbert space, was made in (1).


1999 ◽  
Vol 22 (1) ◽  
pp. 97-108 ◽  
Author(s):  
A. Parsian ◽  
A. Shafei Deh Abad

For a real Hilbert space(H,〈,〉), a subspaceL⊂H⊕His said to be a Dirac structure onHif it is maximally isotropic with respect to the pairing〈(x,y),(x′,y′)〉+=(1/2)(〈x,y′〉+〈x′,y〉). By investigating some basic properties of these structures, it is shown that Dirac structures onHare in one-to-one correspondence with isometries onH, and, any two Dirac structures are isometric. It is, also, proved that any Dirac structure on a smooth manifold in the sense of [1] yields a Dirac structure on some Hilbert space. The graph of any densely defined skew symmetric linear operator on a Hilbert space is, also, shown to be a Dirac structure. For a Dirac structureLonH, everyz∈His uniquely decomposed asz=p1(l)+p2(l)for somel∈L, wherep1andp2are projections. Whenp1(L)is closed, for any Hilbert subspaceW⊂H, an induced Dirac structure onWis introduced. The latter concept has also been generalized.


1969 ◽  
Vol 21 ◽  
pp. 1421-1426 ◽  
Author(s):  
Heydar Radjavi

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space ℋ is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.This work was motivated by a well-known resul t of Halmos and Kakutani (3) that every unitary operator on ℋ is the product of four symmetries, i.e., operators that are self-adjoint and unitary.1. By “operator” we shall mean bounded linear operator. The space ℋ will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on ℋ by and that of symmetries by .


2006 ◽  
Vol 13 (03) ◽  
pp. 239-253 ◽  
Author(s):  
V. I. Man'ko ◽  
G. Marmo ◽  
A. Simoni ◽  
F. Ventriglia

The tomographic description of a quantum state is formulated in an abstract infinite-dimensional Hilbert space framework, the space of the Hilbert-Schmidt linear operators, with trace formula as scalar product. Resolutions of the unity, written in terms of over-complete sets of rank-one projectors and of associated Gram-Schmidt operators taking into account their non-orthogonality, are then used to reconstruct a quantum state from its tomograms. Examples of well known tomographic descriptions illustrate the exposed theory.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350001 ◽  
Author(s):  
MATTHEW McKAGUE

We consider the power of various quantum complexity classes with the restriction that states and operators are defined over a real, rather than complex, Hilbert space. It is well known that a quantum circuit over the complex numbers can be transformed into a quantum circuit over the real numbers with the addition of a single qubit. This implies that BQP retains its power when restricted to using states and operations over the reals. We show that the same is true for QMA (k), QIP (k), QMIP and QSZK.


Sign in / Sign up

Export Citation Format

Share Document