scholarly journals Evaluation and Comparison of Temperature-Based Models for The Prediction of The Monthly Average of Daily Global Solar Radiation for Baghdad City- Iraq

2020 ◽  
pp. 533-539
Author(s):  
Awras H. Ajil

The solar energy is the major source of power for the future and an important source of renewable energy in Iraq and the world. Suitable climate conditions for solar energy are available in Iraq, especially the high temperature in the summer season which extends for more than six months in the year. Hence, the global solar radiation is abundant with high intensity, which is very essential in applicable models for researchers and solar applications. Therefore, nine first-order regression empirical equations of Angstrom-type correlations were used to estimate the more appropriate global solar radiation model for Baghdad city. Two equations were developed empirically in this work, using the most available and easy to get meteorological data, which is the temperature value in various forms. The results of the comparison between the real and calculated values showed reasonable agreement for most equations (including the development of R2- at 99%) as well as the least values of types of errors RMSE and MBE. As an exception, two equations of models failed in this study because of inability to apply to such climate conditions of Baghdad city.

2016 ◽  
Vol 8 (3) ◽  
pp. 289-295
Author(s):  
Dominykas Vasarevičius ◽  
Modestas Pikutis

The model of solar radiation, which takes into account direct, diffused and reflected components of solar energy, has been presented. Model is associated with geographical coordinates and local time of every day of the year. It is shown that using analytic equations for modelling the direct component, it is possible to adopt it for embedded systems with low computational power and use in solar tracking applications. Reflected and diffused components are especially useful in determining the performance of photovoltaic modules in certain location and surroundings. The statistical method for cloud layer simulation based on local meteorological data is offered. The presented method can’t be used for prediction of weather conditions but it provides patterns of solar radiation in time comparable to those measured with pyranometer. Cloud layer simulation together with total solar radiation model is a useful tool for development and analysis of maximum power point tracking controllers for PV modules. Pateikiamą saulės spinduliavimo modelį sudaro trys komponentai: tiesioginio spinduliavimo, sklaidos ir atspindžių. Modelyje numatyta galimybė jį susieti su fotovoltinės elektrinės vietovės geografinėmis koordinatėmis, metų diena ir vietos laiku. Modelio komponentuose panaudotos analitinės formulės nereikalauja didelių skaičiavimo resursų. Tai leidžia modelį taikyti didžiausios galios taško sekimui skirtose įterptinėse sistemose. Sklaidos ir atspindžių komponentai leidžia nustatyti fotovoltinių modulių efektyvumą elektrinės įrengimo vietovėje. Debesų modelis sudarytas remiantis gaunamais statistiniais meteorologiniais duomenimis. Pateiktas modelis negali būti naudojamas oro sąlygų prognozei. Modeliu imituojamas saulės spinduliavimas atkartoja rezultatus, gautus matuojant piranometru. Saulės spinduliavimo modelis, įvertinantis dangaus debesuotumą, yra naudingas įrankis kuriant fotovoltinių modulių didžiausios galios sekimo elektronines sistemas.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
A. K. Katiyar ◽  
C. K. Pandey

Energy is considered as a key source for the future and plays a pivotal role in its socioeconomic development by raising the standard of living and the quality of life, not only for India but also for the world. In view of the scarce fossil fuel reserves, solar energy is one of the important sources of renewable energy used in India because of the suitable climate conditions. It receives about 5485.17 Wh/m2day of solar insolation with an annual total of about 19, 74, 661.2 Wh/m2. Except for the monsoon months, solar radiation incidence is very encouraging, from the application point of view. For the efficient functioning and better performance of solar energy device, the information of solar radiation and its components at particular location is very essential for designing the solar energy devices. Therefore, over the years, several empirical correlations have been developed in order to estimate the more appropriate solar radiation in India as well as around the world. Here we present a review of different solar radiation models which predict global solar radiation and discussed the long-term plan to meet future energy demand with renewable energy due to economy growth.


2013 ◽  
Vol 368-370 ◽  
pp. 1228-1231
Author(s):  
Fen E Hu ◽  
Sheng Xian Wei ◽  
Neng Bang Hou

A solar radiation model to determine solar energy collection on solar collector array with different aspect ratios has been developed. The relations between the aspect ratio and the average daily solar radiation collection on the collector array have been deeply studied. The results show that there is an optimum aspect ratio to maximize the solar energy collection on the collector arrays. The optimum aspect ratios of the 1000 m2 collector array for Haikou, Kunming, Lhasa and Beijing are 10/1, 1/3, 5/1 and 10/1.The optimum aspect ratios of 1000 m2, 500 m2, 200 m2 and 100 m2 collector arrays for Kunming are 1/3, 3/1, 7/1 and 1/5, respectively.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242002
Author(s):  
Demin Xu ◽  
Yiming Li ◽  
Yue Zhang ◽  
Hui Xu ◽  
Tianlai Li ◽  
...  

In order to further improve the utilization of solar energy in Chinese Solar Greenhouse (CSG), this paper systematically studied the effects of orientation and structure on solar radiation interception in CSG. A solar radiation model has been developed based on the previous research, which taking solar motion law, meteorological data, and optical properties of materials into consideration. The established model was used to optimize the orientation and structure of CSG. The analysis of structure considered two major structural parameters, which are the ridge height and the horizontal projection of the rear roof. Moreover, the widely used Liao-Shen type Chinese solar greenhouse (CSG-LS) has been taken as the prototype in the present research, and the measured data of the typical clear day was used for the model validation. The results showed that the ridge height has a remarkable influence on the solar energy captured by CSG-LS. Compared with the optimization of a single factor, the comprehensive optimization of orientation and structure can increase the solar radiation interception of the rear wall by 3.95%. Considering the limiting factor of heat storage-release capacity and the shading effect on the greenhouse structure, the optimal lighting construction of the CSG-LS (with a span of 9.0 m) was specified as 7~9° from south to west of azimuth angle, 4.5~4.7 m ridge height, and 1.4~1.6 m horizontal projection of the rear roof at 42°N latitude. The proposed solar radiation model can provide scientific guidance for the CSG-LS construction in different areas.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Qingwen Zhang ◽  
Ningbo Cui ◽  
Yu Feng ◽  
Yue Jia ◽  
Zhuo Li ◽  
...  

Complete and accurate global solar radiation (Rs) data at a specific region are crucial for regional climate assessment and crop growth modeling. The objective of this paper was to evaluate the capability of 12 solar radiation models based on meteorological data obtained from 21 meteorological stations in China. The results showed that the estimated and measured daily Rs had statistically significant correlations (P<0.01) for all the 12 models in 7 subzones of China. The Bahel model showed the best performance for daily Rs estimation among the sunshine-based models, with average R2 of 0.910, average RMSE of 2.306 MJ m−2 d−1, average RRMSE of 17.3%, average MAE of 1.724 MJ m−2 d−1, and average NS of 0.895, respectively. The Bristow-Campbell (BC) model showed the best performance among the temperature-based models, with average R2 of 0.710, average RMSE of 3.952 MJ m−2 d−1, average RRMSE of 29.5%, average MAE of 2.958 MJ m−2 d−1, and average NS of 0.696, respectively. On monthly scale, Ögelman model showed the best performance among the sunshine-based models, with average RE of 5.66%. The BC model showed the best performance among the temperature-based models, with average RE of 8.26%. Generally, the sunshine-based models were more accurate than the temperature-based models. Overall, the Bahel model is recommended to estimate daily Rs, Ögelman model is recommended to estimate monthly average daily Rs in China when the sunshine duration is available, and the BC model is recommended to estimate both daily Rs and monthly average daily Rs when only temperature data are available.


2021 ◽  
Author(s):  
Yue Jia ◽  
Yongjun Su ◽  
Fengchun Wang ◽  
Pengcheng Li ◽  
Shuyi Huo

Abstract Reliable global solar radiation (Rs) information is crucial for the design and management of solar energy systems for agricultural and industrial production. However, Rs measurements are unavailable in many regions of the world, which impedes the development and application of solar energy. To accurately estimate Rs, this study developed a novel machine learning model, called a Gaussian exponential model (GEM), for daily global Rs estimation. The GEM was compared with four other machine learning models and two empirical models to assess its applicability using daily meteorological data from 1997–2016 from four stations in Northeast China. The results showed that the GEM with complete inputs had the best performance. Machine learning models provided better estimates than empirical models when trained by the same input data. Sunshine duration was the most effective factor determining the accuracy of the machine learning models. Overall, the GEM with complete inputs had the highest accuracy and is recommended for modeling daily Rs in Northeast China.


Sign in / Sign up

Export Citation Format

Share Document