scholarly journals Preparation and Evaluation of Solid Dispersion of Nebivolol Using Solvent Evaporation Method

Author(s):  
A. Laxmi Raj ◽  
Y. Shravan Kumar

Nebivolol is a pharmaceutical drug used for the treatment of Hypertension. It is characterized with poor solubility which limits its absorption and dissolution rate which delays onset of action. In the present study, fifteen formulations of solid dispersions were prepared with 1:1:1, 1:5:2 and 1:3:1.5 ratios of drug: carrier: surfactant by solvent evaporation method. There was significant improvement in the rate of drug release from all 15 solid dispersions and the formulation (SD14) comprising Nebivolol: Kleptose HPB: SLS in 1:5:2 ratio has shown enhanced solubility about 42 folds and significant improvement in the rate of drug release i.e. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of Nebivolol has been converted into an amorphous form from crystalline within the solid dispersion formulation. The present study demonstrated that formulation of Nebivolol solid dispersion is a highly effective strategy for enhancing the bioavailability of poorly water soluble drug Nebivolol.

Author(s):  
MAHAPARALE PR ◽  
THORAT VP

Objective: Leflunomide is Non steroidal Anti-Inflammatory drug, which is poorly water soluble. In present study attempt has been made to prepare and characterize solid dispersions of leflunomide to increase solubility of drug.Method:  In Preparation of solid dispersion of leflunomide different polymer like PEG 4000, PEG 6000, Poloxamer 188 and Poloxamer 407 were used.  Effects of several variables such as type of carrier used, drug: carrier ratios, method of preparation were studied. The evaluation of solid dispersions was done by solubility study, dissolution study and X-ray diffractometry. Result: Improvement in dissolution of drug was observed in all solid dispersions as compared to pure drug alone. Solid dispersions prepared using Poloxamer 188 showed fastest in vitro drug release. Solid dispersions prepared using solvent evaporation method showed relatively faster drug release than melt evaporation method. XRD patterns indicated reduced crystallinity of drug particles, which suggests mechanism of enhanced solubility and dissolution of drug in solid dispersion systems.Conclusion:  A significant result obtained with the study indicated that solid dispersion by solvent evaporation can successfully be further explored and employed to improve solubility and dissolution characteristics of poorly soluble drugs.Keywords: Leflunomide, Solid dispersion, Carrier


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Vishwa M

Rilpivirine benzonitrile is a pharmaceutical drug used for the treatment of HIV infection it is characterized with poor solubility that limits its absorption and dissolution rate, which delays onset of action. In the present study, immediate release solid dispersion of antiretroviral Rilpivirine was formulated by solvent evaporation technique. Eighteen solid dispersions were prepared with 1:1:1, 1:2:1 and 1:3:1 ratios of drug: carrier: surfactant. There was significant improvement in the rate of drug release from all 18 solid dispersions and the formulation (SE12) comprising Rilpivirine: Kolliwax GMS II: SLS in 1:3:1 by solvent evaporation process has shown enhanced solubility about 30 folds and significant improvement in the rate of drug release. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of Rilpivirine has been converted into an amorphous form from crystalline within the solid dispersion formulation. The obtained results suggested that developed solid dispersion by solvent evaporation method might be an efficacious approach for enhancing the solubility and dissolution rate of Rilpivirine.   


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Srinivas I

Repaglinide is a pharmaceutical drug used for the treatment of type II diabetes mellitus, it is characterized with poor solubility which limits its absorption and dissolution rate and delays onset of action. In the present study, immediate release solid dispersion of repaglinide was formulated by solvent evaporation technique. Repaglinide solid dispersions were prepared using PEG 8000, Pluronic F 127 and Gelucire 44/14 by solvent evaporation method. A 3-factor, 3-level central composite design employed to study the effect of each independent variable on dependent variables. FTIR studies revealed that no drug excipient interaction takes place. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of repaglinide has been converted into an amorphous form from crystalline within the solid dispersion formulation. The correlation coefficient showed that the release profile followed Higuchi model anomalous behavior and hence release mechanism was indicative of diffusion. The obtained results suggested that developed solid dispersion by solvent evaporation method might be an efficacious approach for enhancing the solubility and dissolution rate of repaglinide.


2019 ◽  
Vol 11 (1) ◽  
pp. 241 ◽  
Author(s):  
D. Christopher Vimalson ◽  
S. Parimalakrishnan ◽  
N. S. Jeganathan ◽  
S. Anbazhagan

Objective: The present study was aimed to enhance the solubility of poorly water-soluble drug (BCS Class II) Febuxostat using water-soluble polymers.Methods: Pre-formulation studies like drug excipient compatibility studies by Fourier-transform infrared spectroscopyDifferential scanning calorimetry and determination of saturation solubility of drug individually in various media like distilled water and pH 7.4 phosphate buffer. Solid dispersions of Febuxostat was prepared using Polyethylene glycol (PEG 6000) (fusion method) and Polyvinyl pyrrolidone (PVP K30) (solvent evaporation method) in various ratios like 1:1, 1:2, 1:3 and 1:4 separately. The formulated solid dispersions were evaluated for percentage yield, drug content and in vitro dissolution studies.Results: From the results of pre-formulation studies it was revealed that there was no interaction between drug and excipients and the pure drug was poorly soluble in water. The percentage yield of all formulations was in the range of 54-78 %, and drug content was in the range of 43-78 mg. The solid dispersion containing polyvinylpyrrolidone K 30 in 1:4 ratio showed the highest amount of drug release at the end of 30 min than other formulations.Conclusion: Finally it was concluded that solid dispersion prepared with PVP K-30 in 1:4 ratio by solvent evaporation method was more soluble than by fusion method.


1970 ◽  
Vol 3 (2) ◽  
pp. 43-46
Author(s):  
Riaz Uddin ◽  
Farzana Ali ◽  
Subrata Kumar Biswas

Key Words: Solid dispersions; solvent evaporation method; atorvastatin; HPMCDOI: http://dx.doi.org/10.3329/sjps.v3i2.8036 S.J. Pharm. Sci 3(2): 43-46


Author(s):  
Sanjesh G. Rathi ◽  
Dhruv B. Chaudhari

The solid dispersions of Bilastine with HPMC, PVP K30 and HPC have been prepared in different weight ratios by using solvent evaporation method. DSC was used to characterize the samples of solid dispersions and pure drug. Drug found compatible with the excipients. The highest improvements in solubility and in-vitro drug release were observed in solid dispersion prepared with HPC (F14) by solvent evaporation method. The increased dissolution rate of drug from solid dispersion may be due to surface tension lowering effect of polymer to the medium and increased wettability and dispersibility of drug. Hence, F14 Solid dispersion with the HPC carrier considered as most satisfactory among all solid dispersions.


Author(s):  
ABHIK KAR ◽  
ABDUL BAQUEE AHMED

Objective: The present study was aimed to enhance the solubility of poorly water soluble drug Ibuprofen using solid dispersion technique and to develop sustained release tablets containing solid dispersion granules of the optimized batch. Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) with analgesic, antipyretic, and anti-inflammatory propertiesMethods: Solid dispersions of Ibuprofen were prepared by using PEG 20000 and Poloxamer 407 in different weight ratios by fusion and solvent evaporation method. Drug-carrier physical mixtures were also prepared. Solid dispersions were characterized by saturation solubility, drug content, in vitro dissolution, FTIR and DSC analysis. Solid dispersion formulation, SDF9 (PEG 20000 and Poloxamer 407, 1:3:3) prepared by solvent evaporation method was considered as the optimized batch. Sustained release tablets containing the solid dispersion granules of the optimized batch were prepared by direct compression method using HPMC K100M at three concentrations (10%, 14%, 18% w/w). The prepared formulations were evaluated for hardness, thickness, weight variation, friability, in vitro dissolution studies and release kinetics modelling.Results: Solid dispersion formulation, SDF9showed 95.09% drug release in 60 min and considered as the optimized batch. Tablet formulation, FT3 (HPMC K100M 18% w/w) showed 96% drug release for 12 h.Conclusion: Solid dispersions of ibuprofen using a combination of PEG 20000 and poloxamer 407 by solvent evaporation method may result in higher aqueous solubility of the drug. Also sustained release tablets containing solid dispersion granules of ibuprofen, using HPMC K100M may be a promising approach to extend the release rate of the drug from the solid dispersion for 12 h.


Author(s):  
CHETAN V PAWAR ◽  
SWATI S MUTHA ◽  
SAGAR V BHISE ◽  
PAYAL D BORAWAKE

Objective: The objective of the present work was the preparation and evaluation of mouth dissolving tablets (MDTs) of meloxicam using natural superdisintegrants. Methods: Meloxicam is BCS Class II (low soluble, and high permeable) drug increasing the dissolution properties of the poorly water-soluble drug meloxicam using a solid dispersion method (solvent evaporation method). Solvent evaporation method using drug and carrier as polyethylene glycol (PEG)-6000 and PEG-15,000 the ratio of 1:1, 1:2 (drug:carrier), and acetone as solvent. In house prepared banana powder were used as natural superdisintegrant. Manufacturing of MDT was done by the direct compression method. In this MDTs, various excipients were used such as mannitol used as the diluent, sodium saccharin used as a sweetening agent, Avicel pH-102 used as a binding agent, and talc and sodium lauryl sulfate (SLS) used as lubricant and glidant. The best formula of the tablet was selected according to the disintegration time (DT) and friability tests. Results: The results have shown that an increase in the meloxicam solubility was obtained using solid dispersion with the solvent evaporation method using PEG-15000 as a carrier in the ratio of 1:2 (drug:carrier). Taste masking was also done by a solid dispersion method. Tablet prepared with in house prepared banana powder gave less DT (70 s) as compared to tablet prepared with branded banana powder (80 s), but formulation F5 failed in friability testing. Improved strength of tablet obtained using SLS (<1%) also showed an increase in the dissolution performance of the tablet in formulation F6. This F6 formulation having 10% natural super disintegrating agent (in house prepared banana powder) has shown 99% cumulative drug release within 18 min. It also passed the friability test. Conclusion: Accordingly, the solubility of meloxicam was successfully enhanced through solid dispersion with carrier PEG-15,000 and formulated as a MDT to improve its oral absorption. PEG has also been used as a taste masking agent in these formulations. It was concluded that in house banana powder had excellent DT as compared to branded banana powder. Banana powder is “economical” and “easily available” than other commonly used synthetic superdisintegrants. The process of banana powder preparation is eco friendly. The meloxicam MDT formulated with natural superdisintegrant in house prepared banana powder found to pass all pharmacopeial tests.


Author(s):  
S. D. Mankar ◽  
Punit R. Rachh

Background: Solid dispersions (SDs) are the dispersion of hydrophobic drugs in an inert hydrophilic carrier. SDs are prepared to improve the dissolution properties and bioavailability of slightly water-soluble drug molecules by dispersing them into an inert hydrophilic carrier. Aims and Objective: Evaluate the dissolution and solubility of Solid Dispersion of Lercanidipine Hydrochloride (LER). Materials and Methods: To study the effect of polymer, dissolution and solubility studies were carried out. Solid state characterizations of prepared solid dispersions were performed by differential scanning calorimetry (DSC).Drug- carrier interactions were studied by FT-IR spectroscopy, whereas X-ray diffraction of powder was done to demonstrate the crystal structure of the dispersions. Results: The prepared solid dispersion exhibited 94% drug release at 30 minutes which is higher than both LER pure and LER MKT. Better dissolution characteristic of solid dispersion was confirmed by 9.86 min MDT and 63.12% DE30 which is higher than that of LER MKT (13.64 MDT, 46.92 % DE30) Solid state characterization revealed that enhancement of dissolution is the result of conversion of crystalline form of LER to less crystalline and/or amorphous form. Conclusion: Solid dispersion of LER can successfully be prepared with the PEG6000 in the ratio of 1:6 using solvent evaporation technique. It is a successful and easy approach for the increase in onset of action of drug after administration and facilitates treatment of cardiovascular diseases.


Author(s):  
Md Armin Minhaz ◽  
Md Mofizur Rahman ◽  
Md Qamnul Ahsan ◽  
Abul Bashar Ripon Khalipha ◽  
Mohammed Raihan Chowdhury

In order to investigate the effect of polymers on release mechanism of poorly soluble drugs from solid dispersions, Clonazepam was used as a model drug for these purposes. Five types of solid dispersions were prepared using polyethylene glycol 6000 (PEG- 6000), Kollicoat IR, Kollidon VA 64 and Poloxomer in different drug-tocarrier ratios (1:2, 1:4, 1:6, 1:8, 1:10). The solvent evaporation method was used for preparation of solid dispersions. The in-vitro dissolution study with temperature of 37° C and a paddle method, 100 rpm was used in 1000 ml of distilled water as dissolution medium in each dissolution basket for the pure drug and solid dispersions. For pure Clonazepam showed very slow dissolution rate and the solid dispersion considerably enhanced the dissolution rate. Decreased crystalline and increased amorphous fraction of the drug was probably done by wettability and dispersibility. The highest improvement in wettability and dissolution rate of Clonazepam was observed in PEG-6000, Poloxomer and Kollidon VA 64 (1:10 ratio). Solid dispersions containing polymer (1:10 ratio) prepared by solvent method showed significant improvement in the release profile as compared to pure drug, Clonazepam. DOI: http://dx.doi.org/10.3329/ijpls.v1i2.12952 International Journal of Pharmaceutical and Life Sciences Vol.1(2) 2012


Sign in / Sign up

Export Citation Format

Share Document