scholarly journals Machine Vision in Manufacturing Processes and the Digital Twin of Manufacturing Architectures

Author(s):  
Crina Narcisa Deac ◽  
Crina Narcisa Deac ◽  
Cicerone Laurentiu Popa ◽  
Mihalache Ghinea ◽  
Costel Emil Cotet
Author(s):  
Matheus Antonio Nogueira de Andrade ◽  
Herman Lepikson ◽  
Carlos Alberto Machado

2020 ◽  
Vol 10 (18) ◽  
pp. 6578
Author(s):  
Roman Bambura ◽  
Marek Šolc ◽  
Miroslav Dado ◽  
Luboš Kotek

The digital twin (DT) is undergoing an increase in interest from both an academic and industrial perspective. Although many authors proposed and described various frameworks for DT implementation in the manufacturing industry context, there is an absence of real-life implementation studies reported in the available literature. The main aim of this paper is to demonstrate feasibility of the DT implementation under real conditions of a production plant that is specializing in manufacturing of the aluminum components for the automotive industry. The implementation framework of the DT for engine block manufacturing processes consists of three layers: physical layer, virtual layer and information-processing layer. A simulation model was created using the Tecnomatix Plant Simulation (TPS) software. In order to obtain real-time status data of the production line, programmable logic control (PLC) sensors were used for raw data acquisition. To increase production line productivity, the algorithm for bottlenecks detection was developed and implemented into the DT. Despite the fact that the implementation process is still under development and only partial results are presented in this paper, the DT seems to be a prospective real-time optimization tool for the industrial partner.


2021 ◽  
pp. 61-83
Author(s):  
Nihan Yıldırım ◽  
Deniz Tunçalp ◽  
Gizem Gökçer İstanbullu ◽  
Yiğit Konuşkan ◽  
Mehmet İnan ◽  
...  

Procedia CIRP ◽  
2020 ◽  
Vol 88 ◽  
pp. 110-115
Author(s):  
Alexios Papacharalampopoulos ◽  
Panagiotis Stavropoulos ◽  
Demetris Petrides

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5031
Author(s):  
Javier Villalba-Diez ◽  
Miguel Gutierrez ◽  
Mercedes Grijalvo Martín ◽  
Tomas Sterkenburgh ◽  
Juan Carlos Losada ◽  
...  

With the advent of the Industry 4.0 paradigm, the possibilities of controlling manufacturing processes through the information provided by a network of sensors connected to work centers have expanded. Real-time monitoring of each parameter makes it possible to determine whether the values yielded by the corresponding sensor are in their normal operating range. In the interplay of the multitude of parameters, deterministic analysis quickly becomes intractable and one enters the realm of “uncertain knowledge”. Bayesian decision networks are a recognized tool to control the effects of conditional probabilities in such systems. However, determining whether a manufacturing process is out of range requires significant computation time for a decision network, thus delaying the triggering of a malfunction alarm. From its origins, JIDOKA was conceived as a means to provide mechanisms to facilitate real-time identification of malfunctions in any step of the process, so that the production line could be stopped, the cause of the disruption identified for resolution, and ultimately the number of defective parts minimized. Our hypothesis is that we can model the internal sensor network of a computer numerical control (CNC) machine with quantum simulations that show better performance than classical models based on decision networks. We show a successful test of our hypothesis by implementing a quantum digital twin that allows for the integration of quantum computing and Industry 4.0. This quantum digital twin simulates the intricate sensor network within a machine and permits, due to its high computational performance, to apply JIDOKA in real time within manufacturing processes.


Digital Twin ◽  
2021 ◽  
Vol 1 ◽  
pp. 6
Author(s):  
Hao Li ◽  
Gen Liu ◽  
Haoqi Wang ◽  
Xiaoyu Wen ◽  
Guizhong Xie ◽  
...  

Background: Digital twin requires virtual reality mapping and optimization iteration between physical devices and virtual models. The mechanical movement data collection of physical equipment is essential for the implementation of accurate virtual and physical synchronization in a digital twin environment. However, the traditional approach relying on PLC (programmable logic control) fails to collect various mechanical motion state data. Additionally, few investigations have used machine visions for the virtual and physical synchronization of equipment. Thus, this paper presents a mechanical movement data acquisition method based on multilayer neural networks and machine vision. Methods: Firstly, various visual marks with different colors and shapes are designed for marking physical devices. Secondly, a recognition method based on the Hough transform and histogram feature is proposed to realize the recognition of shape and color features respectively. Then, the multilayer neural network model is introduced in the visual mark location. The neural network is trained by the dropout algorithm to realize the tracking and location of the visual mark. To test the proposed method, 1000 samples were selected. Results: The experiment results shows that when the size of the visual mark is larger than 6mm, the recognition success rate of the recognition algorithm can reach more than 95%. In the actual operation environment with multiple cameras, the identification points can be located more accurately. Moreover, the camera calibration process of binocular and multi-eye vision can be simplified by the multilayer neural networks. Conclusions: This study proposes an effective method in the collection of mechanical motion data of physical equipment in a digital twin environment. Further studies are needed to perceive posture and shape data of physical entities under the multi-camera redundant shooting.


2020 ◽  
Vol 51 ◽  
pp. 309-315
Author(s):  
Xiaochen Zheng ◽  
Foivos Psarommatis ◽  
Pierluigi Petrali ◽  
Claudio Turrin ◽  
Jinzhi Lu ◽  
...  

2021 ◽  
Author(s):  
Danhui Dan ◽  
Yufeng Ying ◽  
Liangfu Ge

Bridges play an important role in transportation infrastructure systems. Intelligent and digital management of bridges group is an essential part of the future intelligent transportation infrastructure system. This paper proposes a digital twin system for bridges group in the regional transportation infrastructure network, which is interconnected by measured traffic loads. In physical space, a full-bridge traffic load monitoring system based on information fusion of weigh-in-motion (WIM) and multi-source heterogeneous machine vision is set up on the target bridge to measure traffic loads, also lightweight sensors are employed on the bridges group for structural response information. Furthermore, by establishing mechanical analysis models in the corresponding digital space and using the measured traffic loads as links, the working condition perception and safety warning of all bridges in the regional transportation network is achieved, forming an important support for further intelligent transportation infrastructure system. The proposed digital twin system has been preliminarily implemented in a bridges group around Shanghai, China, demonstrating the feasibility of the technical framework proposed in this paper and the bright prospects.


Sign in / Sign up

Export Citation Format

Share Document