scholarly journals Implementation of Digital Twin for Engine Block Manufacturing Processes

2020 ◽  
Vol 10 (18) ◽  
pp. 6578
Author(s):  
Roman Bambura ◽  
Marek Šolc ◽  
Miroslav Dado ◽  
Luboš Kotek

The digital twin (DT) is undergoing an increase in interest from both an academic and industrial perspective. Although many authors proposed and described various frameworks for DT implementation in the manufacturing industry context, there is an absence of real-life implementation studies reported in the available literature. The main aim of this paper is to demonstrate feasibility of the DT implementation under real conditions of a production plant that is specializing in manufacturing of the aluminum components for the automotive industry. The implementation framework of the DT for engine block manufacturing processes consists of three layers: physical layer, virtual layer and information-processing layer. A simulation model was created using the Tecnomatix Plant Simulation (TPS) software. In order to obtain real-time status data of the production line, programmable logic control (PLC) sensors were used for raw data acquisition. To increase production line productivity, the algorithm for bottlenecks detection was developed and implemented into the DT. Despite the fact that the implementation process is still under development and only partial results are presented in this paper, the DT seems to be a prospective real-time optimization tool for the industrial partner.

2020 ◽  
Vol 10 (10) ◽  
pp. 3633
Author(s):  
Luis Pérez ◽  
Silvia Rodríguez-Jiménez ◽  
Nuria Rodríguez ◽  
Rubén Usamentiaga ◽  
Daniel F. García

Intelligent automation, including robotics, is one of the current trends in the manufacturing industry in the context of “Industry 4.0”, where cyber-physical systems control the production at automated or semi-automated factories. Robots are perfect substitutes for a skilled workforce for some repeatable, general, and strategically-important tasks. However, this transformation is not always feasible and immediate, since certain technologies do not provide the required degree of flexibility. The introduction of collaborative robots in the industry permits the combination of the advantages of manual and automated production. In some processes, it is necessary to incorporate robots from different manufacturers, thus the design of these multi-robot systems is crucial to guarantee the maximum quality and efficiency. In this context, this paper presents a novel methodology for process automation design, enhanced implementation, and real-time monitoring in operation based on creating a digital twin of the manufacturing process with an immersive virtual reality interface to be used as a virtual testbed before the physical implementation. Moreover, it can be efficiently used for operator training, real-time monitoring, and feasibility studies of future optimizations. It has been validated in a use case which provides a solution for an assembly manufacturing process.


2012 ◽  
Vol 326-328 ◽  
pp. 366-371 ◽  
Author(s):  
D. Zambrana ◽  
A. Aranda ◽  
G. Ferreira ◽  
F. Barrio

Manufacturing processes involve the input of high quality energy and/or dissipation of low quality energy to manipulate a material; similarly the input of high quality material usually leads to the generation of low quality materials. A useful output involves the operation of conventional processes including a wide variety of functions such as lubrication, air compression, cooling, heating, pumping, etc., which have, on the one hand, high energy and material consumption and, on the other hand, losses due to an inherent departure from reversible processes. This paper presents an energy-flow methodology to determine the ratio between the additional energy required per useful energy unit for the manufacturing processes. As an application of the method proposed in this work, an assembly and welding production line is shown as a case study. This process is a common technique used in the manufacturing industry and its energy consumption depends on several parameters e.g. heat and electrical input. As a result of this study, the energy consumption of the production line has been reduced by approximately 30% from the 645.94 Wh of total energy consumption, where the consumption of real useful energy is 4% of this total.


2021 ◽  
Author(s):  
Mairi Kerin ◽  
Duc Truong Pham ◽  
Jun Huang ◽  
Jeremy Hadall

Abstract A digital twin is a “live” virtual replica of a sensorised component, product, process, human, or system. It accurately copies the entity being modelled by capturing information in real time or near real time from the entity through embedded sensors and the Internet-of-Things. Many applications of digital twins in manufacturing industry have been investigated. This article focuses on the development of product digital twins to reduce the impact of quantity, quality, and demand uncertainties in remanufacturing. Starting from issues specific to remanufacturing, the article derives the functional requirements for a product digital twin for remanufacturing and proposes a UML model of a generic asset to be remanufactured. The model has been demonstrated in a case study which highlights the need to translate existing knowledge and data into an integrated system to realise a product digital twin, capable of supporting remanufacturing process planning.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5031
Author(s):  
Javier Villalba-Diez ◽  
Miguel Gutierrez ◽  
Mercedes Grijalvo Martín ◽  
Tomas Sterkenburgh ◽  
Juan Carlos Losada ◽  
...  

With the advent of the Industry 4.0 paradigm, the possibilities of controlling manufacturing processes through the information provided by a network of sensors connected to work centers have expanded. Real-time monitoring of each parameter makes it possible to determine whether the values yielded by the corresponding sensor are in their normal operating range. In the interplay of the multitude of parameters, deterministic analysis quickly becomes intractable and one enters the realm of “uncertain knowledge”. Bayesian decision networks are a recognized tool to control the effects of conditional probabilities in such systems. However, determining whether a manufacturing process is out of range requires significant computation time for a decision network, thus delaying the triggering of a malfunction alarm. From its origins, JIDOKA was conceived as a means to provide mechanisms to facilitate real-time identification of malfunctions in any step of the process, so that the production line could be stopped, the cause of the disruption identified for resolution, and ultimately the number of defective parts minimized. Our hypothesis is that we can model the internal sensor network of a computer numerical control (CNC) machine with quantum simulations that show better performance than classical models based on decision networks. We show a successful test of our hypothesis by implementing a quantum digital twin that allows for the integration of quantum computing and Industry 4.0. This quantum digital twin simulates the intricate sensor network within a machine and permits, due to its high computational performance, to apply JIDOKA in real time within manufacturing processes.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yan Bai ◽  
Jeong-Bong You ◽  
Il-Kyoo Lee

Aiming at the problems of irrational allocation of resources, low efficiency caused by unbalanced production line layout, and slow production line upgrade of the smart factory, this paper builds a real physical smart factory platform through the optimal control strategy and uses the GRAFCET algorithm to optimize the logistics scheduling during the actual system operation. The genetic algorithm is used to optimize the layout effect of the production line; the digital twin technology is used to provide predictive analysis technical support for the upgrading and reengineering of the production line. Through the analysis and comparison of the production capacity and equipment utilization of the physical smart factory and the virtual smart factory processing scheme, practice shows that the design of the digital twin system can effectively improve the effect and accuracy of the lean production method in the production process reorganization. Quantitative analysis of manufacturing industry provides powerful theoretical and technical support.


Digital Twin ◽  
2021 ◽  
Vol 1 ◽  
pp. 11
Author(s):  
Tingyu Liu ◽  
Mengming Xia ◽  
Qing Hong ◽  
Yifeng Sun ◽  
Pei Zhang ◽  
...  

The digital twin shop-floor has received much attention from the manufacturing industry as it is an important way to upgrade the shop-floor digitally and intelligently. As a key part of the shop-floor, humans' high autonomy and uncertainty leads to the difficulty in digital twin modeling of human behavior. Therefore, the modeling system for cross-scale human behavior in digital twin shop-floors was developed, powered by the data fusion of macro-behavior and micro-behavior virtual models. Shop-floor human macro-behavior mainly refers to the role of the human and their real-time position. Shop-floor micro-behavior mainly refers to real-time human limb posture and production behavior at their workstation. In this study, we reviewed and summarized a set of theoretical systems for cross-scale human behavior modeling in digital twin shop-floors. Based on this theoretical system, we then reviewed modeling theory and technology from macro-behavior and micro-behavior aspects to analyze the research status of shop-floor human behavior modeling. Lastly, we discuss and offer opinion on the application of cross-scale human behavior modeling in digital twin shop-floors. Cross-scale human behavior modeling is the key for realizing closed-loop interactive drive of human behavior in digital twin shop-floors.


2021 ◽  
Vol 73 (03) ◽  
pp. 34-37
Author(s):  
Judy Feder

The time needed to eliminate complications and accidents accounts for 20–25% of total well construction time, according to a 2020 SPE paper (SPE 200740). The same paper notes that digital twins have proven to be a key enabler in improving sustainability during well construction, shrinking the carbon footprint by reducing overall drilling time and encouraging and bringing confidence to contactless advisory and collaboration. The paper also points out the potential application of digital twins to activities such as geothermal drilling. Advanced data analytics and machine learning (ML) potentially can reduce engineering hours up to 70% during field development, according to Boston Consulting Group. Increased field automation, remote operations, sensor costs, digital twins, machine learning, and improved computational speed are responsible. It is no surprise, then, that digital twins are taking on a greater sense of urgency for operators, service companies, and drilling contractors working to improve asset and enterprise safety, productivity, and performance management. For 2021, digital twins appear among the oil and gas industry’s top 10 digital spending priorities. DNV GL said in its Technology Outlook 2030 that this could be the decade when cloud computing and advanced simulation see virtual system testing, virtual/augmented reality, and machine learning progressively merge into full digital twins that combine data analytics, real-time, and near-real-time data for installations, subsurface geology, and reservoirs to bring about significant advancements in upstream asset performance, safety, and profitability. The biggest challenges to these advancements, according to the firm, will be establishing confidence in the data and computational models that a digital twin uses and user organizations’ readiness to work with and evolve alongside the digital twin. JPT looked at publications from inside and outside the upstream industry and at several recent SPE papers to get a snapshot of where the industry stands regarding uptake of digital twins in well construction and how the technology is affecting operations and outcomes. Why Digital Twins Gartner Information defines a digital twin as a digital representation of a real-world entity or system. “The implementation of a digital twin,” Gartner writes, “is an encapsulated software object or model that mirrors a unique physical object, process, organization, person or other abstraction.” Data from multiple digital twins can be aggregated for a composite view across several real-world entities and their related processes. In upstream oil and gas, digital twins focus on the well—and, ultimately, the field—and its lifecycle. Unlike a digital simulation, which produces scenarios based on what could happen in the physical world but whose scenarios may not be actionable, a digital twin represents actual events from the physical world, making it possible to visualize and understand real-life scenarios to make better decisions. Digital well construction twins can pertain to single assets or processes and to the reservoir/subsurface or the surface. Ultimately, when process and asset sub-twins are connected, the result is an integrated digital twin of the entire asset or well. Massive sensor technology and the ability to store and handle huge amounts of data from the asset will enable the full digital twin to age throughout the life-cycle of the asset, along with the asset itself (Fig. 1).


2021 ◽  
Author(s):  
Rabiya Abbasi ◽  
Abraham Reyes Yanes ◽  
Emanuel Martinez Villanuera ◽  
Rafiq Ahmad

Sign in / Sign up

Export Citation Format

Share Document