scholarly journals Investigating The Effect Of A Speckle Pattern On Measurement Uncertainty In A Three-Dimensional Digital Image Correlation (3D-Dic) System

Author(s):  
Calvin Jee ◽  
Gabriel Salata ◽  
David Nobes ◽  
Kajsa Duke
Author(s):  
Weston D Craig ◽  
Fiona B Van Leeuwen ◽  
Steven R Jarrett ◽  
Robert S Hansen ◽  
Ryan B Berke

In certain applications, native surface patterns can be used in place of speckle patterns in digital image correlation (DIC). This paper explores the feasibility of using text as a native speckle pattern in DIC. Five text speckle patterns are tested in three different scenarios: a rigid body translation test, a rigid body rotation test, and an out of plane bending test. The patterns are benchmarked against a sixth, random speckle pattern applied using traditional DIC speckling methods. Rigid body translation tests are additionally performed on text patterns with varying font types and line spacings. In general, text patterns have good contrast, but low density as line spacing increases. Measurement uncertainty for the text patterns was comparable to measurement uncertainty in the random speckle pattern. Results from these tests show that while text patterns cannot be expected to perform better than a traditional DIC speckle pattern, text patterns can be effective speckle patterns in situations where already present on a specimen and applying a traditional speckle pattern is difficult.


2017 ◽  
Vol 8 (2) ◽  
pp. 337-347 ◽  
Author(s):  
Jorge Barrios-Muriel ◽  
Francisco Javier Alonso Sánchez ◽  
David Rodríguez Salgado ◽  
Francisco Romero-Sánchez

Abstract. Today there is continuous development of wearable devices in various fields such as sportswear, orthotics and personal gadgets, among others. The design of these devices involves the human body as a support environment. Based on this premise, the development of wearable devices requires an improved understanding of the skin strain field of the body segment during human motion. This paper presents a methodology based on a three dimensional digital image correlation (3D-DIC) system to measure the skin strain field and to estimate anatomical lines with minimum deformation as design criteria for the aforementioned wearable devices. The errors of displacement and strain measurement related to 3-D reconstruction and out-of-plane motion are investigated and the results are acceptable in the case of large deformation. This approach can be an effective tool to improve the design of wearable devices in the clinical orthopaedics and ergonomics fields, where comfort plays a key role in supporting the rehabilitation process.


2021 ◽  
Vol 263 (3) ◽  
pp. 3861-3870
Author(s):  
Kenji Homma ◽  
Paul R. Braunwart ◽  
Patrick L. Clavette

Digital Image Correlation (DIC) is an image-based method for measuring displacement and/or stain on the surface of a structure. When coupled with a stereo pair of highspeed cameras, DIC can also capture three-dimensional dynamic deformation of a structure under vibratory loading. However, high frequency and small amplitude displacement typically associated with structural vibrations mean that extra care is required during measurement and data processing. It becomes more challenging when thermal disturbances are present in the optical path, for example from a heated air flow, which introduces extraneous noise due to disturbances in the refractive index. In the present study, a simple composite plate was vibrated under a shaker excitation and stereo DIC measurements were performed. The obtained vibratory displacement results were compared against accelerometers and a laser Doppler vibrometer. Heated air flow was introduced in front of the plate to observe the effects of thermal disturbances on the DIC measurements. Although the contributions from the thermal disturbances were clearly visible in the DIC displacement data, it was shown that the vibratory deflections of the structure could still be extracted by post processing of the DIC data.


Sign in / Sign up

Export Citation Format

Share Document