scholarly journals KAJIAN SIFAT FISIKA TANAH PADA PERTUMBUHAN TANAMAN MANGGIS (Garcinia mangostana L.) DI KABUPATEN LIMA PULUH KOTA

Jurnal Solum ◽  
2008 ◽  
Vol 5 (2) ◽  
pp. 78
Author(s):  
Yulnafatmawita Yulnafatmawita ◽  
Adrinal Adrinal ◽  
Sudewi Isminingsih

This research was aimed to evaluate physical properties of soils grown by mangosteen crops in Lima Puluh Kota Regency, especially in Kecamatan Payakumbuh and Kecamatan Guguk, in West Sumatra.   Soils were sampled by using sample rings for undisturbed and by using soil driller for disturbed samples on 0-20, 20-40, and 40-60 cm soil depth.  Soil samples were analyzed in Soil Laboratory Agriculture Faculty, Andalas University, Padang.  The results showed that soil texture in two locations was similar, that was silty loam for the 0-40 cm depth, and clay for the 40-60 depth.  However, generally soil organic matter content in Guguk was lower than that in Payakumbuh, that was medium to low, BV from low to high, total porosity from high to medium, and permeability from high to slightly slow.  Key  Words: Soil physical properties, mangostana

Jurnal Solum ◽  
2009 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
Yulnafatmawita Yulnafatmawita ◽  
Amrizal Saidi ◽  
Al Asfhihani Elnita

Excessive utilization of natural resource by human being will affect the sustainability of agriculture, land and environment.  This is due to degradation of soil physical properties in the area.  A research about study of soil physical properties had been taken out in a sub-sub watershed Batanang of Sumpur watershed, Batipuh, Tanah Datar Regency, in West Sumatra.  The research was conducted by surveying the area in 2006.  Disturbed and undisturbed soil samples were taken in different land units.  Then, soil samples were analysed at soil laboratory, Agriculture College, Andalas University Padang.  The result showed that all of land units in this sub sub watersehed had the same soil texture class, that was fine clay.  The bulk volume of the soil was higher in Mixed woodland unit than those in forest land units.  Permeability value of the soil was higher at forest from all degrees of slope than that at mixed woodland, even though soil organic matter content of mixed woodland unit higher than that at forest with 25-45% slope.Keywords: Sub watershed (DAS), forest,  land unit, soil physical properties


2015 ◽  
Vol 7 (1) ◽  
pp. 1007-1024
Author(s):  
B. Turgut

Abstract. The aim of this study was to compare the soils of the wheat cultivation area (WCA) and the safflower cultivation area (SCA) within semi-arid climate zones in terms of their total carbon, nitrogen, sulphur contents, particle size distribution, aggregate stability, organic matter content, and pH values. This study presents the results from the analyses of 140 soil samples taken at two soil layers (0–10 and 10–20 cm) in the cultivation areas. At the end of the study, it has been established that there were significant differences between the cultivation areas in terms of soil physical properties such as total carbon (TC), total nitrogen (TN), total sulphur (TS) contents and pH, while only the TN content resulted in significantly different between the two soil layers. Moreover significant differences were identified in the cultivation areas in terms of soil physical properties including clay and sand contents, aggregate stability and organic matter content, whereas the only significant difference found among the soil layers was that of their silt content. Since safflower contains higher amounts of biomass than wheat, we found higher amounts of organic matter content and, therefore, higher amounts of TN and TS content in the soils of the SCA. In addition, due to the fact that wheat contains more cellulose – which takes longer to decompose – the TC content of the soil in the WCA were found to be higher than that of the SCA. The results also revealed that the WCA had a higher carbon storage capacity.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 757-765 ◽  
Author(s):  
Matthew D. Jeffries ◽  
Travis W. Gannon

Indaziflam is a cellulose biosynthesis-inhibiting herbicide for annual weed control in various agricultural systems. Sporadic cases of unacceptable injury to desirable plants have been reported after indaziflam application, which may have been due to conditions favoring increased indaziflam–soil bioavailability. Research was conducted from 2013 to 2015 on a sandy soil to elucidate the effects of soil organic matter content (SOMC) and soil volumetric water content (SVWC) on indaziflam–soil bioavailability. Indaziflam was applied (50 or 100 g ha–1) at fall only, fall plus spring, and spring only timings to plots in a factorial arrangement of SOMC, pre–indaziflam application (PrIA) SVWC, and post–indaziflam application (PoIA) SVWC. After application, field soil cores were collected for a subsequent greenhouse bioassay experiment, where foliage mass reduction of perennial ryegrass seeded from 0 to 15 cm soil depth was used as an indicator of indaziflam–soil bioavailability throughout the profile. Significant edaphic effects were observed at 0 to 2.5, 2.5 to 5, and 5 to 7.5 cm depths, with increased bioavailability at low compared with high SOMC. Pre–indaziflam application SVWC did not affect bioavailability, whereas PoIA high SVWC increased indaziflam–soil bioavailability at 2.5 to 7.5 cm depth compared with PoIA low SVWC. Low SOMC–PoIA high SVWC decreased perennial ryegrass foliage mass 40 and 37% at 5 to 7.5 cm depth from cores collected 10 and 14 wk after treatment, respectively, whereas reductions from all other SOMC–PoIA SVWC combinations were < 12% and did not vary from each other. Pearson's correlation coefficients showed a moderate, positive relationship between perennial ryegrass mass reductions at 0 to 2.5, 2.5 to 5, 0 to 5, and 0 to 10 cm depths and hybrid bermudagrass cover reduction, which suggests conditions favoring increased indaziflam–soil bioavailability can adversely affect plant growth. Data from this research will aid land managers to use indaziflam effectively without adversely affecting growth of desirable species.


2020 ◽  
pp. 124-132

An evaluation of the productivity of degraded alfisols at Makurdi and Otobi, Nigeria, using artificial desurfacing techniques (ADT) was carried out in 2012 and 2013 cropping seasons. The study was a split-split plot experiment arranged in a Randomized Complete Block Design with three replications. The soil was desurfaced at 0 – 5, 0 – 10, 0 – 15, 0 – 20 cm and the undesurfaced soil, 0 cm (control) depths. The restorative amendments were 9 t ha-1 of poultry dropping as an organic source of manure, N:P2O5:K2O as an inorganic source of manure and zero application as control. Soybean variety TGX 1448-2E and maize variety, Oba super II were used as test crop. Saturated hydraulic conductivity was significantly (P = 0.05) lower at 20 cm (29.08 cm hr-1 ), but did not differ significantly at 0 to 10 cm depths. Soil pH of 5.58 was recorded at 0 cm depth and it decreased to 5.05 at 20 cm depth. Also, organic matter content (1.71 – 1.00 g kg-1 ), total nitrogen (0.12 – 0.08 g kg-1 ) as well as CEC (7.39 – 6.24 cmol kg-1 ) recorded a significant decrease with increase in soil depth from 0 to 20 cm depths. Application of poultry manure increased total porosity and saturated hydraulic conductivity as well as organic matter content across desurfaced depths. Soybean number of leaves was significantly (P = 0.05) reduced at 4, 7, and 10 WAP with increased topsoil removal. The highest grain yield of soybean (1474 kg ha-1 ) was recorded on poultry manure treated plots which were significantly higher (p = 0.05) than other treatments. Application of poultry manure caused 20 % soybean yield reduction at 5 depth, and a 56 % reduction at 20 cm depth.


Jurnal Solum ◽  
2010 ◽  
Vol 7 (1) ◽  
pp. 27
Author(s):  
Asmar Asmar ◽  
Amrizal Saidi ◽  
Masliyunas Masliyunas

A research about relationship between soil properties and crop yield was conducted in Pandai Sikek, Tanah Datar Region, center for cabbage and carrot production, West Sumatra in 2004 and 2005.  Soil samples were collected from rainfed paddy soils by purposive random sampling.  Soil samples were analyzed in Soil Laboratory, Agriculture Faculty and Agriculture Polytechnique Laboratory, Andalas University.  Several soil physical properties analysed were soil bulk density and total soil pores by using gravimetric method, permeability with de Boodt method, soil water content at several pF values using pressure plate apparatus, and soil strength by using penetrometer.   Soil chemical parameters analysed were soil pH using pH-meter, organic-C using Walkley and Black, available P using Bray II, and cation exchange capacity using NH4-leaching at pH 7.0, and N-total using Kjehdhal method.  Crop productions were sampled from a 3x3 m2 of soil sampling area.  The result showed that soils planted by cabbage and carrot had good soil physical properties, such as having balanced pore size distribution.  The chemical properties of the soils were good as well, except N, K- and Ca-exchangeable which were very low.  The other soil properties were quite good.  Soil physical properties gave different response on both crops.  Carrots were more response aeration pore and soil organic matter content, then cabbage was more response on BV, TSP, and slow drainage pores.  While soil chemical properties did not give significant response.  Both crops responded on Ca, but cabbage was more response on N-total, and carrot on CEC and saturated cationKey Words: Soil Physical Properties, Soil Fertility, Crop Productivity


2020 ◽  
Vol 12 (4) ◽  
pp. 3189-3204
Author(s):  
Anne Hartmann ◽  
Markus Weiler ◽  
Theresa Blume

Abstract. Soil physical properties highly influence soil hydraulic properties, which define the soil hydraulic behavior. Thus, changes within these properties affect water flow paths and the soil water and matter balance. Most often these soil physical properties are assumed to be constant in time, and little is known about their natural evolution. Therefore, we studied the evolution of physical and hydraulic soil properties along two soil chronosequences in proglacial forefields in the Central Alps, Switzerland: one soil chronosequence developed on silicate and the other on calcareous parent material. Each soil chronosequence consisted of four moraines with the ages of 30, 160, 3000, and 10 000 years at the silicate forefield and 110, 160, 4900, and 13 500 years at the calcareous forefield. We investigated bulk density, porosity, loss on ignition, and hydraulic properties in the form of retention curves and hydraulic conductivity curves as well as the content of clay, silt, sand, and gravel. Samples were taken at three depths (10, 30, 50 cm) at six sampling sites at each moraine. Soil physical and hydraulic properties changed considerably over the chronosequence. Particle size distribution showed a pronounced reduction in sand content and an increase in silt and clay content over time at both sites. Bulk density decreased, and porosity increased during the first 10 millennia of soil development. The trend was equally present at both parent materials, but the reduction in sand and increase in silt content were more pronounced at the calcareous site. The organic matter content increased, which was especially pronounced in the topsoil at the silicate site. With the change in physical soil properties and organic matter content, the hydraulic soil properties changed from fast-draining coarse-textured soils to slow-draining soils with high water-holding capacity, which was also more pronounced in the topsoil at the silicate site. The data set presented in this paper is available at the online repository of the German Research Center for Geosciences (GFZ; Hartmann et al., 2020b). The data set can be accessed via the DOI https://doi.org/10.5880/GFZ.4.4.2020.004.


Solid Earth ◽  
2015 ◽  
Vol 6 (2) ◽  
pp. 719-725 ◽  
Author(s):  
B. Turgut

Abstract. The aim of this study was to compare the soils of the wheat cultivation area (WCA) and the safflower cultivation area (SCA) within semi-arid climate zones in terms of their total carbon, nitrogen, and sulphur contents, particle size distribution, aggregate stability, organic matter content, and pH values. This study presents the results from the analyses of 140 soil samples taken at two soil layers (0–10 and 10–20 cm) in the cultivation areas. At the end of the study, it was established that there were significant differences between the cultivation areas in terms of soil physical properties such as total carbon (TC), total nitrogen (TN), total sulphur (TS) contents and pH, while only the TN content was significantly different between the two soil layers. Moreover, significant differences were identified between the cultivation areas in terms of soil physical properties including clay and sand contents, aggregate stability, and organic matter content, whereas the only significant difference found among the soil layers was that of their silt content. Since safflower contains higher amounts of biomass than wheat, we found higher amounts of organic matter content and, therefore, higher amounts of TN and TS content in the soils of the SCA. In addition, due to the fact that wheat contains more cellulose – which takes longer to decompose – the TC content of the soil in the WCA was found to be higher than that in the SCA. The results also revealed that the WCA had a higher carbon storage capacity.


2014 ◽  
Vol 38 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Piero Iori ◽  
Moacir de Souza Dias Junior ◽  
Ayodele Ebenezer Ajayi ◽  
Paulo Tácito Gontijo Guimarães ◽  
Áureo Aparecido Abreu Júnior

In modern agriculture, several factors cause changes in the soil physical properties. The time of establishment of a crop (plantation age) and the slope are examples of factors that moderate the impact of mechanized operations on the soil structure. The objective of this study was to analyze the effect of machinery traffic on the physical properties of a Red-Yellow Latosol under coffee plantations with different ages (2, 7, 18, and 33 years) and slope positions (3, 9 and 15 %). Samples were collected from three positions between coffee rows (lower wheel track, inter-row and upper wheel track) and at two depths (surface layer and sub-surface). Changes in the total porosity, macroporosity, microporosity, organic matter, bulk density, and aggregate stability were investigated. Our results showed that the slope influenced the organic matter content, microporosity and aggregate stability. The soil samples under the inter-row were minimally damaged in their structure, compared to those from under the lower and upper wheel track, while the structure was better preserved under the lower than the upper track. The time since the establishment of the crop, i.e., the plantation age, was the main factor determining the extent of structural degradation in the coffee plantation.


Jurnal Solum ◽  
2007 ◽  
Vol 4 (2) ◽  
pp. 81
Author(s):  
Yulnafatmawita Yulnafatmawita ◽  
Asmar Asmar ◽  
Ari Ramayani

A research about soil physical study of four main soils found in West Sumatra was conducted in 2006.  The research was aimed to determine some soil physical properties of four soil which are mostly found in West Sumatra.  The four soil orders assessed were Ultisol from Agricultural Expreriment Station Limau Manis, Oxisol from Lubuk Minturun, Entisol from Tabing Kecamatan Koto Tangah Padang, dan Andisol from Bukik Gompong Kabupaten Solok.  The result showed that at the depth of 0-20 cm soil profile.  Ultisol and Oxisol had finer texture than those of Andisol and Entisol.  Andisol was dominated by silt while Entisol was dominated by sand particles.  Andisol had the lowest bulk density and the highest soil organic matter and total porosity.  Soil Organic matter content of Entisol, Oxisol, and Ultisols was low in criteria.  Plant available water (PAW) was higher in Oxisol, then followed by Andisol, Ultisol, and Entisol.Key words: Organic matter, bulk density, texture, porosity, plant available water


Sign in / Sign up

Export Citation Format

Share Document