scholarly journals Restorative effects of amendments on artificially degraded soils in the Southern Guinea Savanna of Nigeria.

2020 ◽  
pp. 124-132

An evaluation of the productivity of degraded alfisols at Makurdi and Otobi, Nigeria, using artificial desurfacing techniques (ADT) was carried out in 2012 and 2013 cropping seasons. The study was a split-split plot experiment arranged in a Randomized Complete Block Design with three replications. The soil was desurfaced at 0 – 5, 0 – 10, 0 – 15, 0 – 20 cm and the undesurfaced soil, 0 cm (control) depths. The restorative amendments were 9 t ha-1 of poultry dropping as an organic source of manure, N:P2O5:K2O as an inorganic source of manure and zero application as control. Soybean variety TGX 1448-2E and maize variety, Oba super II were used as test crop. Saturated hydraulic conductivity was significantly (P = 0.05) lower at 20 cm (29.08 cm hr-1 ), but did not differ significantly at 0 to 10 cm depths. Soil pH of 5.58 was recorded at 0 cm depth and it decreased to 5.05 at 20 cm depth. Also, organic matter content (1.71 – 1.00 g kg-1 ), total nitrogen (0.12 – 0.08 g kg-1 ) as well as CEC (7.39 – 6.24 cmol kg-1 ) recorded a significant decrease with increase in soil depth from 0 to 20 cm depths. Application of poultry manure increased total porosity and saturated hydraulic conductivity as well as organic matter content across desurfaced depths. Soybean number of leaves was significantly (P = 0.05) reduced at 4, 7, and 10 WAP with increased topsoil removal. The highest grain yield of soybean (1474 kg ha-1 ) was recorded on poultry manure treated plots which were significantly higher (p = 0.05) than other treatments. Application of poultry manure caused 20 % soybean yield reduction at 5 depth, and a 56 % reduction at 20 cm depth.

Author(s):  
E.O. Ogundipe

Soil properties are important to the development of agricultural crops. This study determined some selected soil properties of a drip irrigated tomato (Lycopersicon esculentum M.) field at different moisture regime in South-Western Nigeria. The experiment was carried out using Randomized Complete Block Design with frequency and depth of irrigation application as the main plot and sub-plot, respectively in three replicates. Three frequencies (7, 5 and 3 days) and three depths equivalent to 100, 75 and 50% of water requirement were used. Undisturbed and disturbed soil samples were collected from 0-5, 5-10, 10-20 and 20-30 cm soil layers for the determination of some soil properties (soil texture, organic matter content, bulk density, infiltration rate and saturated hydraulic conductivity) were determined using standard formulae. Soil Water Content (SWC) monitoring was conducted every two days using a gravimetric technique. The soil texture was sandy loam for all the soil depths; average value of soil organic matter was highest (1.8%) in the 0-5 cm surface layer and decreased with soil depth; the soil bulk density value before and after irrigation experiment ranged from 1.48 and 1.73 g/cm3 and 1.5 and 1.76 g/cm3, respectively; there was a rapid reduction in the initial infiltration and final infiltration rate. Saturated hydraulic conductivity show similar trend although the 20-30 cm layer had the lowest value (50.84 mm/h); the SWC affect bulk density during the growing season. The study showed that soil properties especially bulk density and organic matter content affect irrigation water movement at different depth..


Soil Research ◽  
2012 ◽  
Vol 50 (6) ◽  
pp. 465 ◽  
Author(s):  
E. S. Vogelmann ◽  
J. M. Reichert ◽  
J. Prevedello ◽  
C. A. P. de Barros ◽  
F. L. F. de Quadros ◽  
...  

Burning of vegetation can promote changes in soil physical properties and also create hydrophobic substances, which accumulate and result in the formation of water-repellent layers. A study was conducted between 2005 and 2011 on an Albaqualf, with natural grassland composed mainly of Andropogon lateralis, in southern Brazil, to investigate the induction of hydrophobicity by burning and changes in the soil hydro-physical characteristics. The treatments consisted of no burning, and burned 60, 36, 12, 6, 4, and 2 months before sampling. Burning management did not change the saturated hydraulic conductivity, whereas air permeability was significantly reduced in the surface layer, nearly reaching the original values 4 months after burning. Saturated hydraulic conductivity and air permeability correlated with total porosity and macroporosity. The surface layer was the most sensitive to fire effects, with an increased degree of hydrophobicity for up to 2 months after vegetation burning. Hydrophobicity and contact angle correlated positively with soil organic matter content.


Weed Science ◽  
1997 ◽  
Vol 45 (4) ◽  
pp. 564-567 ◽  
Author(s):  
Glen P. Murphy ◽  
David R. Shaw

Research was conducted in 1994 and 1995 to evaluate the field mobility of flumetsulam in three soils of varied texture and organic matter content but constant pH (pH = 6.0 ± 0.1). Flumetsulam was monitored to a depth of 122 cm at 28, 56, and 84 days after treatment (DAT). Flumetsulam concentrations were determined by cotton bioassay, with separate standard curves for various soil–depth combinations. Following a preemergence application of flumetsulam at 224 g ai ha−1, the herbicide was primarily limited to the upper 8 cm of soil, regardless of soil type, year, or DAT. Exceptions to this typically occurred following substantial rainfall amounts early in the season. Beyond 28 DAT, no significant concentrations of flumetsulam were detected below 15 cm. Results from this research suggest that leaching is not a significant route of flumetsulam dissipation in the field.


2019 ◽  
Vol 11 (4) ◽  
pp. 549
Author(s):  
Francisco de Assis Guedes Júnior ◽  
Deonir Secco ◽  
Luiz Antônio Zanão Júnior ◽  
Luciene Kazue Tokura ◽  
Marcos Felipe Leal Martins

The response to agricultural gypsum, as a conditioner of the root environment in depth, has been observed for most annual crops. These responses are attributed to the better distribution of roots of the crops in depth in the soil by the reduction of chemical impediments, caused by the exchangeable aluminum and calcium deficiency in these layers, which allows to the plants the use of greater volume of water when they occur summer. In this way, the objective of this study was to evaluate the effects of gypsum doses on physical-hydric attributes, root growth and soybean productivity. The experiment was conducted at the Agronomic Institute of Paraná (IAPAR) in Santa Tereza do Oeste-PR. The soil was classified as Typic Haplortox. Five doses of agricultural gypsum were evaluated: 0; 3; 6; 9 and 12 t ha-1, in outline randomized block design with six repetitions. Soil density, total porosity, macroporosity, microporosity and saturated hydraulic conductivity were evaluated at layers of 0.0-0.1; 0.1-0.2 and 0.2-0.3 m. Soybean productivity and root growth were also evaluated. Data were submitted to regression analysis. The physical attributes soil density, macroporosity and saturated hydraulic conductivity did not differ significantly with the application of the gypsum doses in the 0.0-0.1 and 0.2-0.3 m layers. However, in the 0.1-0.2 m layer, due to pressures imposed by the machines and agricultural implements deforming the soil, there were significant differences in the physical attributes of the density, macroporosity and saturated hydraulic conductivity. There was no significant difference in grain productivity and root growth of soybean.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 757-765 ◽  
Author(s):  
Matthew D. Jeffries ◽  
Travis W. Gannon

Indaziflam is a cellulose biosynthesis-inhibiting herbicide for annual weed control in various agricultural systems. Sporadic cases of unacceptable injury to desirable plants have been reported after indaziflam application, which may have been due to conditions favoring increased indaziflam–soil bioavailability. Research was conducted from 2013 to 2015 on a sandy soil to elucidate the effects of soil organic matter content (SOMC) and soil volumetric water content (SVWC) on indaziflam–soil bioavailability. Indaziflam was applied (50 or 100 g ha–1) at fall only, fall plus spring, and spring only timings to plots in a factorial arrangement of SOMC, pre–indaziflam application (PrIA) SVWC, and post–indaziflam application (PoIA) SVWC. After application, field soil cores were collected for a subsequent greenhouse bioassay experiment, where foliage mass reduction of perennial ryegrass seeded from 0 to 15 cm soil depth was used as an indicator of indaziflam–soil bioavailability throughout the profile. Significant edaphic effects were observed at 0 to 2.5, 2.5 to 5, and 5 to 7.5 cm depths, with increased bioavailability at low compared with high SOMC. Pre–indaziflam application SVWC did not affect bioavailability, whereas PoIA high SVWC increased indaziflam–soil bioavailability at 2.5 to 7.5 cm depth compared with PoIA low SVWC. Low SOMC–PoIA high SVWC decreased perennial ryegrass foliage mass 40 and 37% at 5 to 7.5 cm depth from cores collected 10 and 14 wk after treatment, respectively, whereas reductions from all other SOMC–PoIA SVWC combinations were < 12% and did not vary from each other. Pearson's correlation coefficients showed a moderate, positive relationship between perennial ryegrass mass reductions at 0 to 2.5, 2.5 to 5, 0 to 5, and 0 to 10 cm depths and hybrid bermudagrass cover reduction, which suggests conditions favoring increased indaziflam–soil bioavailability can adversely affect plant growth. Data from this research will aid land managers to use indaziflam effectively without adversely affecting growth of desirable species.


1979 ◽  
Vol 59 (1) ◽  
pp. 69-78 ◽  
Author(s):  
C. R. DE KIMPE ◽  
G. R. MEHUYS

Clay-rich soils were sampled in the agricultural areas of Montreal, Quebec and Lake St-Jean. Undisrupted soil blocks and bulk samples were taken by horizon in the Ste-Rosalie, Kamouraska and Normandin soil series. Aggregate stability increased with the organic matter content. Bulk density was generally highest in the B horizons. Porosity ranged from 39 to 56% of the total soil volume and the most representative pore diameter varied from 0.706 to 0.048 μm with the largest diameter being found in the Ap horizons. The distribution of porosity among large, medium and small pores in the Ste-Rosalie soil differed from that in the Kamouraska and Normandin soils. In the former, medium pores accounted for only a few percent of total porosity, while the pores were more evenly distributed in the latter soils. Medium pore contents decreased, while small pore contents increased, with increasing clay contents. No significant relationship was observed between large pores and clay percentages. Hydraulic conductivity, with mean values ranging from 3.5 to 109.3 cm/h, was significantly related to the large pore class.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 629-634 ◽  
Author(s):  
Blake A. Brown ◽  
Robert M. Hayes ◽  
Donald D. Tyler ◽  
Thomas C. Mueller

Fluometuron adsorption and degradation were determined in soil collected at three depths from no-till + no cover, conventional-till + no cover, no-till + vetch cover, and conventional-till + vetch cover in continuous cotton. These combinations of tillage + cover crop + soil depth imparted a range of organic matter and pH to the soil. Soil organic matter and pH ranged from 0.9 to 2.5% and from 4.7 to 6.5, respectively. Fluometuron adsorption was affected by soil depth, tillage, and cover crop. In surface soils (0 to 4 cm), fluometuron adsorption was greater in no-till + vetch plots than in conventional-tilled + no cover plots. Soil adsorption of fluometuron was positively correlated with organic matter content and cation exchange capacity. Fluometuron degradation was not affected by adsorption, and degradation empirically fit a first-order model. Soil organic matter content had no apparent effect on fluometuron degradation rate. Fluometuron degradation was more rapid at soil pH > 6 than at pH ≤ 5, indicating a potential shift in microbial activity or population due to lower soil pH. Fluometuron half-life ranged from 49 to 90 d. These data indicate that tillage and cover crop may affect soil dissipation of fluometuron by altering soil physical and chemical properties that affect fluometuron degrading microorganisms or bioavailability.


2020 ◽  
Author(s):  
Martine van der Ploeg ◽  
Attila Nemes

&lt;p&gt;Soil hydro-physical properties &amp;#8212;such as soil water retention, (un)saturated hydraulic conductivity, shrinkage and swelling, organic matter content, texture (particle distribution), structure (soil aggregation/pore structure)and bulk density&amp;#8212; are used in many sub(surface) modeling applications. Reliable soil-hydrophysical properties are key to proper predictions with such models, yet the harmonization and standardization of these properties has not received much attention. Lack of harmonization and standardization may lead to heterogeneity in data as a result of differences in methodologies, rather than real landscape heterogeneity. A need and scope has been identified to better harmonize, innovate, and standardize methodologies regarding measuring soil hydraulic properties that form the information base of many derived products in support of EU policy. With this identified need in mind the Soil Program on Hydro-Physics via International Engagement (SOPHIE) was initiated in 2017. Besides developing new activities that may advise future measurements, we also explore historic data and metadata and mine its relevant contents. The European Hydro-pedological Data Inventory (EU-HYDI), the largest European database on measured soil hydrophysical properties, is &amp;#8211; to date &amp;#8211; rather under-explored in this sense, which served as motivation for this work.&lt;/p&gt;&lt;p&gt;From EU-HYDI we selected those records that were complete for soil texture, bulk density and organic matter, and fitted pedo-transfer functions separately for particular water retention points (at heads of 0, 2.5, 10, 100, 300, 1000, 3000, 15000 cm) and saturated hydraulic conductivity by multi-linear regression. We then subtracted the observed retention and hydraulic conductivity values from their estimated counterparts, and grouped the residuals by measurement methodologies. The results show that there can be significant differences between different methodologies and sample sizes used to obtain the water retention and hydraulic conductivity in the laboratory. The results thus show that the EU-data that may underlie large scale modelling may introduce errors in the forcing data that are attributed to a lack of harmonization and standardization in currently used measurement protocols.&lt;/p&gt;


2016 ◽  
Vol 29 (2) ◽  
pp. 290-295 ◽  
Author(s):  
JOSÉ EGÍDIO FLORI ◽  
GERALDO MILANEZ DE RESENDE

ABSTRACT: Banana is one of the most consumed fruits in the world, which is grown in most tropical countries. The objective of this work was to evaluate the main attributes of soil fertility in a banana crop under two cover crops and two root development locations. The work was conducted in Curaçá, BA, Brazil, between October 2011 and May 2013, using a randomized block design in split plot with five repetitions. Two cover crops were assessed in the plots, the cover 1 consisting of Pueraria phaseoloides, and the cover 2 consisting of a crop mix with Sorghum bicolor, Ricinus communis L., Canavalia ensiformis, Mucuna aterrima and Zea mays, and two soil sampling locations in the subplots, between plants in the banana rows (location 1) and between the banana rows (location 2). There were significant and independent effects for the cover crop and sampling location factors for the variables organic matter, Ca and P, and significant effects for the interaction between cover crops and sampling locations for the variables potassium, magnesium and total exchangeable bases. The cover crop mix and the between-row location presented the highest organic matter content. Potassium was the nutrient with the highest negative variation from the initial content and its leaf content was below the reference value, however not reducing the crop yield. The banana crop associated with crop cover using the crop mix provided greater availability of nutrients in the soil compared to the coverage with tropical kudzu.


2015 ◽  
Vol 30 (1) ◽  
pp. 20
Author(s):  
Deni Prasetiyo ◽  
Djoko Purnomo ◽  
Supriyadi Supriyadi

<p><em>Soybean is one of the most important food commodities in Indonesia and also it has high value. The needs continue to increase each year, but not offset by increased production become an issue that must be addressed. One attempt to increase soybean production is through the cultivation in agroforestry systems through improving the quality of soil fertility. This research aims to study the effect of various doses of </em><em>litter teak</em><em> and NPK fertilizer on chemical soil fertility and the potential of soybeans yield in agroforestry systems based teak crops. Experiments using a Randomized Complete Block Design </em><em>(RCBD) </em><em>with two factors, namely litter</em><em> teak</em><em> doses (0 ton ha<sup>-1</sup>, 2.500 ton ha<sup>-1</sup>, 5.000 ton ha<sup>-1</sup>, 7.500 ton ha<sup>-1</sup>) and dose</em><em>s</em><em> of NPK fertilizer (60-60-60 and 60-120-60) on Grobogan soybean varieties. The variables measured were pH, organic matter content, N-total soil, cation exchange capacity (CEC), plant tissue of N, P-total soil, and component production. Data analysis using analysis of variance F-test based on the level of 5% and significantly different variables followed by </em><em>Tukey’s method </em><em>level of 5%</em><em>. The results showed that combination treatment with various doses of teak litter NPK fertilizers can increase total nitrogen content of the soil with the highest yield of 1.69% on S1D2 treatment, but to organic matter, CEC, pH, and total soil P not significant effect. Component of soybean varieties of the highest Grobogan of 0.83 tons ha-1 in the treatment S1D1. The result was still below the average of the national soybean production.</em></p>


Sign in / Sign up

Export Citation Format

Share Document