scholarly journals Implementation of a method using tritiated substrates as a diagnostic tool for OCTN2 deficiency.

1969 ◽  
Vol 39 (4) ◽  
pp. 323-327
Author(s):  
José Henry Osorio

Introduction: The transport of carnitine into the cell is mediated by a high-affinity sodium-dependent plasmalemmal carnitine transporter, OCTN2. Carnitine is a zwitterion essential for the mitochondrial oxidation of long-chain fatty acids. Primary carnitine deficiency is a consequence of the deficiency of OCTN2. Objective: The objective of the present study was to analyse the oxidation rate of tritiated substrates by fibroblasts from patients suffering OCTN2 deficiency and controls. Materials and methods: Fibroblasts from patients and controls were incubated with [3H]-palmitate and [3H]-miristate and the oxidation of these substrates were measured in nmol/hour/mg protein. Results: We found depressed the oxidation of tritiated substrates in fibroblasts from patients suffering the deficiency of OCTN2 in more than 60%. Conclusion: This modified technique enables us the in vitro diagnosis or primary carnitine deficiency.

1996 ◽  
Vol 19 (3) ◽  
pp. 243-246 ◽  
Author(s):  
Michael J. Bennett ◽  
Daniel E. Hale ◽  
Rodney J. Pollitt ◽  
Sadick Variend ◽  
Charles A. Stanley

1984 ◽  
Vol 67 (7) ◽  
pp. 1439-1444 ◽  
Author(s):  
William Chalupa ◽  
Bonnie Rickabaugh ◽  
D. Kronfeld ◽  
S. David Sklan

2006 ◽  
Vol 5 (12) ◽  
pp. 2047-2061 ◽  
Author(s):  
Jana Klose ◽  
James W. Kronstad

ABSTRACT The transition from yeast-like to filamentous growth in the biotrophic fungal phytopathogen Ustilago maydis is a crucial event for pathogenesis. Previously, we showed that fatty acids induce filamentation in U. maydis and that the resulting hyphal cells resemble the infectious filaments observed in planta. To explore the potential metabolic role of lipids in the morphological transition and in pathogenic development in host tissue, we deleted the mfe2 gene encoding the multifunctional enzyme that catalyzes the second and third reactions in β-oxidation of fatty acids in peroxisomes. The growth of the strains defective in mfe2 was attenuated on long-chain fatty acids and abolished on very-long-chain fatty acids. The mfe2 gene was not generally required for the production of filaments during mating in vitro, but loss of the gene blocked extensive proliferation of fungal filaments in planta. Consistent with this observation, mfe2 mutants exhibited significantly reduced virulence in that only 27% of infected seedlings produced tumors compared to 88% tumor production upon infection by wild-type strains. Similarly, a defect in virulence was observed in developing ears upon infection of mature maize plants. Specifically, the absence of the mfe2 gene delayed the development of teliospores within mature tumor tissue. Overall, these results indicate that the ability to utilize host lipids contributes to the pathogenic development of U. maydis.


1992 ◽  
Vol 157 (3) ◽  
pp. 223-228 ◽  
Author(s):  
Naoki Morita ◽  
Nobuhiro Okajima ◽  
Masaru Gotoh ◽  
Hideyuki Hayashi ◽  
Hidetoshi Okuyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document