scholarly journals Rumen Fermentation In Vitro as Influenced by Long Chain Fatty Acids

1984 ◽  
Vol 67 (7) ◽  
pp. 1439-1444 ◽  
Author(s):  
William Chalupa ◽  
Bonnie Rickabaugh ◽  
D. Kronfeld ◽  
S. David Sklan
2006 ◽  
Vol 5 (12) ◽  
pp. 2047-2061 ◽  
Author(s):  
Jana Klose ◽  
James W. Kronstad

ABSTRACT The transition from yeast-like to filamentous growth in the biotrophic fungal phytopathogen Ustilago maydis is a crucial event for pathogenesis. Previously, we showed that fatty acids induce filamentation in U. maydis and that the resulting hyphal cells resemble the infectious filaments observed in planta. To explore the potential metabolic role of lipids in the morphological transition and in pathogenic development in host tissue, we deleted the mfe2 gene encoding the multifunctional enzyme that catalyzes the second and third reactions in β-oxidation of fatty acids in peroxisomes. The growth of the strains defective in mfe2 was attenuated on long-chain fatty acids and abolished on very-long-chain fatty acids. The mfe2 gene was not generally required for the production of filaments during mating in vitro, but loss of the gene blocked extensive proliferation of fungal filaments in planta. Consistent with this observation, mfe2 mutants exhibited significantly reduced virulence in that only 27% of infected seedlings produced tumors compared to 88% tumor production upon infection by wild-type strains. Similarly, a defect in virulence was observed in developing ears upon infection of mature maize plants. Specifically, the absence of the mfe2 gene delayed the development of teliospores within mature tumor tissue. Overall, these results indicate that the ability to utilize host lipids contributes to the pathogenic development of U. maydis.


1992 ◽  
Vol 157 (3) ◽  
pp. 223-228 ◽  
Author(s):  
Naoki Morita ◽  
Nobuhiro Okajima ◽  
Masaru Gotoh ◽  
Hideyuki Hayashi ◽  
Hidetoshi Okuyama ◽  
...  

1968 ◽  
Vol 51 (5) ◽  
pp. 715-720 ◽  
Author(s):  
D.A. Cook ◽  
A.D. McGilliard ◽  
Marlene Richard

1990 ◽  
Vol 68 (7) ◽  
pp. 903-907 ◽  
Author(s):  
Stephen C. Cunnane ◽  
Bassam A. Nassar

The rat mesenteric vascular bed releases prostaglandins when perfused in vitro. The present study evaluated the effect of perfusion of the rat mesenteric vascular bed in vitro with a buffer containing 0, 3, 6, or 9 nM of added zinc on the release of essential fatty acids over a 150-min period. Long chain fatty acids in the mesenteric lipids and in total lipid of the perfusion effluent were assayed by gas liquid chromatography. The presence of 6 nM zinc in the perfusing buffer almost completely prevented the change in 16–22 carbon long chain fatty acids in the mesenteric phospholipids and decreased the release of free fatty acids in comparison to that occurring in the absence of additional zinc. The results sugest that physiological amounts of zinc in the perfusion medium reduce the release of essential fatty acids from rat mesenteric lipids.Key words: zinc, phospholipid, linoleic acid, arachidonic acid, prostaglandin.


2011 ◽  
Vol 70 (OCE3) ◽  
Author(s):  
C. J. Harden ◽  
A. N. Jones ◽  
T. Maya-Jimenez ◽  
M. E. Barker ◽  
N. J. Hepburn ◽  
...  

2013 ◽  
Vol 25 (6) ◽  
pp. 947 ◽  
Author(s):  
M. Kiernan ◽  
A. G. Fahey ◽  
S. Fair

This study aimed to investigate the effects of long-chain fatty acids (α-linolenic acid (ALA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), linoleic acid (LA), oleic acid (OA) and palmitic acid (PA)) at concentrations of 10–100 µM, on extended bull spermatozoa stored in vitro for up to 7 days. Progressive linear motion (PLM), viability (Experiments 1–3), ability to penetrate artificial mucus (Experiment 1), reactive oxygen species (ROS; Experiment 2) and superoxide production (Experiment 3) were assessed. Spermatozoa maintained the ability to penetrate artificial mucus up to Day 4, irrespective of treatment. In Experiments 2 and 3, DHA and EPA had detrimental effects on PLM and viability. PA preserved PLM and viability at levels greater than the control (P < 0.05), whilst keeping ROS levels to a minimum, particularly on Days 1 and 3 (P < 0.01) when ROS generation peaked in other treatments. In contrast, superoxide production peaked on Day 0 (Experiment 3) and declined thereafter with no significant effect of fatty acid. This study supports the notion that superoxide dominates on Day 0, whereas its breakdown products, hydrogen peroxide and the hydroxyl radical as assessed by CM-H2DCFDA, contribute to ROS generation on subsequent days.


Sign in / Sign up

Export Citation Format

Share Document