scholarly journals Production Allocation on Commingled Two Layer Well Using Fingerprint Method

Author(s):  
Fahrudin Zuhri ◽  
Rachmat Sudibjo ◽  
R. S. Trijana Kartoatmodjo

<p>Production proportion ratio study of commingled well two layers reservoir has been developed by geochemistry approaching, with oil reservoir fingerpint methode by using Gas Chromatography then processed by Chemstation software. The study is developed to solve the commingled well production alocation problem in oil field. There are 4 oil samples will be analyzed to represent each layer and commingle production oil sample in 2009 and 2015.<br />Result of study, figures out that oil fingerprint from commingle production has a difference as long as production time. Oil sample that taken from different commingle production time is predicted to produce a different ratio contribution form each layer of reservoir. Every layer reservoir has a different contribution from 2009 to 2015. Result of production proportion ratio study can be applied to decisionmaking of reservoir developement in an oil field, especially for well completion and enhanced oil recovery. This methode is proven to be a solution of commingle production problem of two layers reservoir. Fingerprint methode to determine production proportion ratio of commingled well production is the first in Indonesia.</p>

2013 ◽  
Vol 734-737 ◽  
pp. 1434-1439 ◽  
Author(s):  
Gang Wu ◽  
Fu Ping Ren ◽  
Jing You ◽  
Ji Liang Yu ◽  
Ya Tuo Pei ◽  
...  

Based on the low-temperature and heavy oil reservoir of conventional injection well pattern separated two strains of oil degradation bacteria LC and JH which had satisfactory compatibleness with BaoLige oill field. In order to study the feasibility of enhancing oil recovery rate of the two strains, the experiment of huff and puff with 15 wells were carried out. The average concentration of bacteria increase from 4.7×102cells/ml to 8.1×106cells/ml. The average reduction of surface tension and viscosity is 33.1% and 31.9%. The accumulative total was 1163.2t. The ratio of input to output was 1:2.12. Microbial enhanced oil recovery can improve the low-temperature and heavy oil production status, which provide a effective method for the similar oil field.


2002 ◽  
Vol 5 (01) ◽  
pp. 33-41 ◽  
Author(s):  
L.R. Brown ◽  
A.A. Vadie ◽  
J.O. Stephens

Summary This project demonstrated the effectiveness of a microbial permeability profile modification (MPPM) technology for enhancing oil recovery by adding nitrogenous and phosphorus-containing nutrients to the injection water of a conventional waterflooding operation. The MPPM technology extended the economic life of the field by 60 to 137 months, with an expected recovery of 63 600 to 95 400 m3 (400,000 to 600,000 bbl) of additional oil. Chemical changes in the composition of the produced fluids proved the presence of oil from unswept areas of the reservoir. Proof of microbial involvement was shown by increased numbers of microbes in cores of wells drilled within the field 22 months after nutrient injection began. Introduction The target for enhanced oil recovery processes is the tremendous quantity of unrecoverable oil in known deposits. Roughly two thirds [approximately 55.6×109 m3 (350 billion bbl)] of all of the oil discovered in the U.S. is economically unrecoverable with current technology. Because the microbial enhanced oil recovery (MEOR) technology in this report differs in several ways from other MEOR technologies, it is important that these differences be delineated clearly. In the first place, the present project is designed to enhance oil recovery from an entire oil reservoir, rather than treat single wells. Even more important is the fact that this technology relies on the action of the in-situ microflora, not microorganisms injected into the reservoir. It is important to note that MPPM technology does not interfere with the normal waterflood operation and is environmentally friendly in that neither microorganisms nor hazardous chemicals are introduced into the environment. Description of the Oil Reservoir. The North Blowhorn Creek Oil Unit (NBCU) is located in Lamar County, Alabama, approximately 75 miles west of Birmingham. This field is in what is known geologically as the Black Warrior basin. The producing formation is the Carter sandstone of Mississippian Age at a depth of approximately 700 m (2,300 ft). The Carter reservoir is a northwest/ southeast trending deltaic sand body, approximately 5 km (3 miles) long and 1 to 1.7 km (1/2 to 1 mile) wide. Sand thickness varies from only 1 m up to approximately 12 m (40 ft). The sand is relatively clean (greater than 90% quartz), with no swelling clays. The field was discovered in 1979 and initially developed on 80-acre spacing. Waterflooding of the reservoir began in 1983. The initial oil in place in the reservoir was approximately 2.54×106 m3 (16 million bbl), of which 874 430 m3 (5.5 million bbl) had been recovered by the end of 1995. To date, North Blowhorn Creek is the largest oil field discovered in the Black Warrior basin. Oil production peaked at almost 475 m3/d (3,000 BOPD) in 1985 and has since declined steadily. Currently, there are 20 injection wells and 32 producing wells. Oil production at the outset of the field demonstration was approximately 46 m3/d oil (290 BOPD), 1700 m3/d gas (60 MCFD), and 493 m3/d water (3,100 BWPD), with a water-injection rate of approximately 660 m3/d (4,150 BWPD). Projections at the beginning of the project were that approximately 1.59×106 m3 oil (10 million bbl of oil) would be left unrecovered if some new method of enhanced recovery were not effective. Prefield Trial Studies The concepts of the technology described in this paper had been proven to be effective in laboratory coreflood experiments.1,2 However, it seemed advisable to conduct coreflood experiments with cores from the reservoir being used in the field demonstration. Toward this end, two wells were drilled, and cores were obtained from one for the laboratory coreflood experiments to determine the schedule and amounts of nutrients to be employed in the field trial.3


2021 ◽  
Vol 48 (1) ◽  
pp. 169-178
Author(s):  
Xiangguo LU ◽  
Bao CAO ◽  
Kun XIE ◽  
Weijia CAO ◽  
Yigang LIU ◽  
...  

2021 ◽  
Author(s):  
Vil Syrtlanov ◽  
Yury Golovatskiy ◽  
Ivan Ishimov

Abstract In this paper the simplified way is proposed for predicting the dynamics of liquid production and estimating the parameters of the oil reservoir using diagnostic curves, which are a generalization of analytical approaches, partially compared with the results of calculations on 3D simulation models and with actual well production data.


2021 ◽  
Author(s):  
Ivan Krasnov ◽  
Oleg Butorin ◽  
Igor Sabanchin ◽  
Vasiliy Kim ◽  
Sergey Zimin ◽  
...  

Abstract With the development of drilling and well completion technologies, multi-staged hydraulic fracturing (MSF) in horizontal wells has established itself as one of the most effective methods for stimulating production in fields with low permeability properties. In Eastern Siberia, this technology is at the pilot project stage. For example, at the Bolshetirskoye field, these works are being carried out to enhance the productivity of horizontal wells by increasing the connectivity of productive layers in a low- and medium- permeable porous-cavernous reservoir. However, different challenges like high permeability heterogeneity and the presence of H2S corrosive gases setting a bar higher for the requirement of the well construction design and well monitoring to achieve the maximum oil recovery factor. At the same time, well and reservoir surveillance of different parameters, which may impact on the efficiency of multi-stage hydraulic fracturing and oil contribution from each hydraulic fracture, remains a challenging and urgent task today. This article discusses the experience of using tracer technology for well monitoring with multi-stage hydraulic fracturing to obtain information on the productivity of each hydraulic fracture separately.


2021 ◽  
Author(s):  
Xiaofei Xiong ◽  
James Jia Sheng

Abstract Sustainable development of shale reservoirs and enhanced oil recovery have become a challenge for the oil industry in recent years. Shale reservoirs are typically characterized by nano Darcy-scale matrix, natural fractures, and artificially fractures with high permeability. Some of earlier studies have confirmed that gas huff-n-puff has been investigated and demonstrated as the most effective and promising solution for improving oil recovery in tight shale reservoirs with ultra-low permeability. Fractures provide an advantage in enhancing recovery from shale reservoirs but they also pose serious problems such as severe gas channeling, which led to rapid decline production from a single well. More studies are needed to optimize the process. This paper studies the method of foam-assisted N2 huff-n-puff to enhance oil recovery in fractured shale cores. The influence of foam on oil recovery was analyzed. The effect of matrix permeability, cycle number and production time on oil recovery are also considered. The shale core used in the experiment was from Sichuan Basin, China. For the purpose of comparation and validation, two groups of tests were conducted. One group of tests was N2 huff-n-puff, and the other was foam-N2 huff-n-puff. In the optimization experiment, matrix permeabilities were set as 0.01mD, 0.008mD and 0.001mD, cycle numbers ranged from one to five, the production time is designed to be 1 hour and 24 hours respectively. During the puff period of experiments, the history of oil recovery was closely monitored to reveal the mechanism. During a round of gas injection of fractured shale cores, foam-assisted N2 huff-n-puff oil recovery is 4.59%, which is significantly higher than that of N2 huff-n-puff is only 0.0126%, and the contrast becomes more obvious with the increase of matrix permeability. The results also showed that the cumulative oil recovery increased as the number of cycles was increased, with the same experimental conditions. There is an optimal production time to achieve maximum oil recovery. The cycle numbers, matrix permeability, and production time played important roles in foam-assisted N2 huff-n-puff injection process. Therefore, under certain conditions, foam-N2 huff-n-puff has a positive effect on oil development in fractured shale.


Sign in / Sign up

Export Citation Format

Share Document