Slowing Production Decline and Extending the Economic Life of an Oil Field: New MEOR Technology

2002 ◽  
Vol 5 (01) ◽  
pp. 33-41 ◽  
Author(s):  
L.R. Brown ◽  
A.A. Vadie ◽  
J.O. Stephens

Summary This project demonstrated the effectiveness of a microbial permeability profile modification (MPPM) technology for enhancing oil recovery by adding nitrogenous and phosphorus-containing nutrients to the injection water of a conventional waterflooding operation. The MPPM technology extended the economic life of the field by 60 to 137 months, with an expected recovery of 63 600 to 95 400 m3 (400,000 to 600,000 bbl) of additional oil. Chemical changes in the composition of the produced fluids proved the presence of oil from unswept areas of the reservoir. Proof of microbial involvement was shown by increased numbers of microbes in cores of wells drilled within the field 22 months after nutrient injection began. Introduction The target for enhanced oil recovery processes is the tremendous quantity of unrecoverable oil in known deposits. Roughly two thirds [approximately 55.6×109 m3 (350 billion bbl)] of all of the oil discovered in the U.S. is economically unrecoverable with current technology. Because the microbial enhanced oil recovery (MEOR) technology in this report differs in several ways from other MEOR technologies, it is important that these differences be delineated clearly. In the first place, the present project is designed to enhance oil recovery from an entire oil reservoir, rather than treat single wells. Even more important is the fact that this technology relies on the action of the in-situ microflora, not microorganisms injected into the reservoir. It is important to note that MPPM technology does not interfere with the normal waterflood operation and is environmentally friendly in that neither microorganisms nor hazardous chemicals are introduced into the environment. Description of the Oil Reservoir. The North Blowhorn Creek Oil Unit (NBCU) is located in Lamar County, Alabama, approximately 75 miles west of Birmingham. This field is in what is known geologically as the Black Warrior basin. The producing formation is the Carter sandstone of Mississippian Age at a depth of approximately 700 m (2,300 ft). The Carter reservoir is a northwest/ southeast trending deltaic sand body, approximately 5 km (3 miles) long and 1 to 1.7 km (1/2 to 1 mile) wide. Sand thickness varies from only 1 m up to approximately 12 m (40 ft). The sand is relatively clean (greater than 90% quartz), with no swelling clays. The field was discovered in 1979 and initially developed on 80-acre spacing. Waterflooding of the reservoir began in 1983. The initial oil in place in the reservoir was approximately 2.54×106 m3 (16 million bbl), of which 874 430 m3 (5.5 million bbl) had been recovered by the end of 1995. To date, North Blowhorn Creek is the largest oil field discovered in the Black Warrior basin. Oil production peaked at almost 475 m3/d (3,000 BOPD) in 1985 and has since declined steadily. Currently, there are 20 injection wells and 32 producing wells. Oil production at the outset of the field demonstration was approximately 46 m3/d oil (290 BOPD), 1700 m3/d gas (60 MCFD), and 493 m3/d water (3,100 BWPD), with a water-injection rate of approximately 660 m3/d (4,150 BWPD). Projections at the beginning of the project were that approximately 1.59×106 m3 oil (10 million bbl of oil) would be left unrecovered if some new method of enhanced recovery were not effective. Prefield Trial Studies The concepts of the technology described in this paper had been proven to be effective in laboratory coreflood experiments.1,2 However, it seemed advisable to conduct coreflood experiments with cores from the reservoir being used in the field demonstration. Toward this end, two wells were drilled, and cores were obtained from one for the laboratory coreflood experiments to determine the schedule and amounts of nutrients to be employed in the field trial.3

2020 ◽  
Vol 194 ◽  
pp. 04046
Author(s):  
Xiulan Zhu ◽  
Yanlong Ran ◽  
Wenjie Guo ◽  
Ke Gai ◽  
Yanju Li ◽  
...  

With the long-term water injection development of Longdong oilfields, most of the oilfield blocks have been fully in the mid-high water cut period, and the amount of oil production wastewater is increasing year by year. In order to prevent the waste of resources and energy of oil production sewage, the oil production sewage after reaching the standard is treated for reinjection, which will ensure the sustainable development of the oil field. Oil production wastewater contains crude oil, solid-phase suspended solids and other pollutants, with high salinity, and problems such as difficulty in oil-water separation, sludge, scaling and corrosion. The sewage treatment system uses a multifunctional water treatment device to effectively remove oil and filter through the “special microorganism + air flotation + filtration” process, and build a sludge sewage tank for sludge discharge and backwashing. The reformed oil recovery wastewater reinjection treatment technology turns “sewage” into “clear flow”, reduces operating costs, improves wastewater treatment efficiency, and meets the water quality requirements of oilfield reinjection water.


2013 ◽  
Vol 734-737 ◽  
pp. 1434-1439 ◽  
Author(s):  
Gang Wu ◽  
Fu Ping Ren ◽  
Jing You ◽  
Ji Liang Yu ◽  
Ya Tuo Pei ◽  
...  

Based on the low-temperature and heavy oil reservoir of conventional injection well pattern separated two strains of oil degradation bacteria LC and JH which had satisfactory compatibleness with BaoLige oill field. In order to study the feasibility of enhancing oil recovery rate of the two strains, the experiment of huff and puff with 15 wells were carried out. The average concentration of bacteria increase from 4.7×102cells/ml to 8.1×106cells/ml. The average reduction of surface tension and viscosity is 33.1% and 31.9%. The accumulative total was 1163.2t. The ratio of input to output was 1:2.12. Microbial enhanced oil recovery can improve the low-temperature and heavy oil production status, which provide a effective method for the similar oil field.


Author(s):  
Fahrudin Zuhri ◽  
Rachmat Sudibjo ◽  
R. S. Trijana Kartoatmodjo

<p>Production proportion ratio study of commingled well two layers reservoir has been developed by geochemistry approaching, with oil reservoir fingerpint methode by using Gas Chromatography then processed by Chemstation software. The study is developed to solve the commingled well production alocation problem in oil field. There are 4 oil samples will be analyzed to represent each layer and commingle production oil sample in 2009 and 2015.<br />Result of study, figures out that oil fingerprint from commingle production has a difference as long as production time. Oil sample that taken from different commingle production time is predicted to produce a different ratio contribution form each layer of reservoir. Every layer reservoir has a different contribution from 2009 to 2015. Result of production proportion ratio study can be applied to decisionmaking of reservoir developement in an oil field, especially for well completion and enhanced oil recovery. This methode is proven to be a solution of commingle production problem of two layers reservoir. Fingerprint methode to determine production proportion ratio of commingled well production is the first in Indonesia.</p>


2021 ◽  
Vol 343 ◽  
pp. 09009
Author(s):  
Gheorghe Branoiu ◽  
Florinel Dinu ◽  
Maria Stoicescu ◽  
Iuliana Ghetiu ◽  
Doru Stoianovici

Thermal oil recovery is a special technique belonging to Enhanced Oil Recovery (EOR) methods and includes steam flooding, cyclic steam stimulation, and in-situ combustion (fire flooding) applied especially in the heavy oil reservoirs. Starting 1970 in-situ combustion (ISC) process has been successfully applied continuously in the Suplacu de Barcau oil field, currently this one representing the most important reservoir operated by ISC in the world. Suplacu de Barcau field is a shallow clastic Pliocene, heavy oil reservoir, located in the North-Western Romania and geologically belonging to Eastern Pannonian Basin. The ISC process are operated using a linear combustion front propagated downstructure. The maximum oil production was recorded in 1985 when the total air injection rate has reached maximum values. Cyclic steam stimulation has been continuously applied as support for the ISC process and it had a significant contribution in the oil production rates. Nowadays the oil recovery factor it’s over 55 percent but significant potential has left. In the paper are presented the important moments in the life-time production of the oil field, such as production history, monitoring of the combustion process, technical challenges and their solving solutions, and scientific achievements revealed by many studies performed on the impact of the ISC process in the oil reservoir.


2010 ◽  
Vol 113-116 ◽  
pp. 830-834
Author(s):  
Yong Hong Huang ◽  
Guo Ling Ren ◽  
Li Wei ◽  
Xiao Lin Wu ◽  
Hong Mei Yuan ◽  
...  

It is difficult to increase crude oil production for Daqing oil field by conventional technologies. In order to increase crude oil production, we make use of microbial enhanced oil recovery technology. The results showed that fluid production increased by 11 tons, oil production increased by 1.7 tons, water rate has decreased by 0.6 tons in oil reservoir after polymer flooding, North-2-4-P47 single-well daily. Microbial community diversity and dynamic change in oil reservoir after polymer flooding in Daqing Oil Field, North 2-4-P47 single-well in the process of microbial enhanced oil recovery was analyzed by PCR-DGGE. The results showed that the dominant microbes of North-2-4-P47 single-well are Acinetobacter johnsonii., Pseudomonas fluorescens., Pseudomonas sp., Bosea sp., Syntrophothermus lipocalidus., Aeromonas media. and some uncultured bacterium. Overall, microbial community diversity is abundant, and dynamic change of microbial community is also great in North-2-4-P49 single-well.


2018 ◽  
Vol 785 ◽  
pp. 70-76
Author(s):  
Vadim Aleksandrov ◽  
Marsel Kadyrov ◽  
Andrey Ponomarev ◽  
Denis Drugov ◽  
Olga Veduta

A lithofacies model of the Fainsk oil field YUS11 formation was built. The results of interventions for oil production stimulation and enhanced oil recovery depending on the section penetrated by wells were considered. Criteria for selection of various types of interventions in particular geophysical conditions were given, and recommendations on the selection of technologies for bottomhole zone processing (BZP) and enhanced oil recovery (EOR) were made. The research objective is to evaluate the effectiveness of interventions in terms of enhanced oil recovery, adapted to the specific features of the field geologic structure aspects. Through the use of sedimentary deposits facies analysis method, a lithofacies model of the Fainsk oil field YUS11 formation was constructed. The application of field-geologic analysis gave an option to evaluate the technological effectiveness of interventions for oil production stimulation and enhanced oil recovery depending on the reservoir units genesis penetrated by wells.


2020 ◽  
Vol 21 (1) ◽  
pp. 39-44
Author(s):  
Ayat Ahmed Jassim ◽  
Abdul Aali Al-dabaj ◽  
Aqeel S. AL-Adili

The water injection of the most important technologies to increase oil production from petroleum reservoirs. In this research, we developed a model for oil tank using the software RUBIS for reservoir simulation. This model was used to make comparison in the production of oil and the reservoir pressure for two case studies where the water was not injected in the first case study but adding new vertical wells while, later, it was injected in the second case study. It represents the results of this work that if the water is not injected, the reservoir model that has been upgraded can produce only 2.9% of the original oil in the tank. This case study also represents a drop in reservoir pressure, which was not enough to support oil production. Thus, the implementation of water injection in the second case study of the average reservoir pressure may support, which led to an increase in oil production by up to 5.5% of the original oil in the tank. so that, the use of water injection is a useful way to increase oil production. Therefore, many of the issues related to this subject valuable of study where the development of new ideas and techniques.


1977 ◽  
Vol 17 (1) ◽  
pp. 105 ◽  
Author(s):  
C. T. Williams

The Windalia Sand is a high porosity, low permeability oil reservoir. Currently 454 wells penetrate the unit for production or water injection operations, and are drilled on a north-south, east-west 16 ha (40 ac.) spacing. Early production performance data indicated a trend of water break-through into wells located east and west of water injection wells in an inverted nine-spot pattern. This early trend has continued and the east- west break-through has become more widespread with time. It was recognised that it could be possible to improve the performance of the waterflood if the factors causing the phenomenon were able to be identified. A detailed geological review of well data was initiated to investigate causes and possible controls of the phenomenon and to determine if oil recovery could be improved. This work was augmented by an engineering study of production data. Subsequently, a computer model was developed to investigate the simulated effects of changes to well patterns on the field's production performance.The geological review determined that the reservoir contains significant local and transitional irregularities (or inhomogeneities). The mapping of a number of reservoir parameters has shown there are genetic patterns or trends and these are postulated as being at least partial controls of preferential direction of fluid movement.Previously the reservoir had been regarded as being a more uniform "layer-cake" sand. Well completion practices and timing together with production and injection methods are thought to have accentuated the latent genetic controls. Imposed pressure parting has been postulated, on engineering premises, as a control of fluid movement. The modelling study used the notion of anisotropic permeability in attempting to history-match production performances.Because of the reservoir size and anisotropy it was impractical to model the entire field. Selected type areas within the reservoir were studied. Good history-matching of various well types (based on location within a pattern) was possible. Predictions of production performance can be made for various simulated pattern changes allowing feasibility studies to be made of possible conversion programs.East-west producing wells are being converted to injectors as they water out. This program has converted part of the reservoir to a line-drive injection configuration and improved performance in these areas is evident.


2017 ◽  
pp. 95-101
Author(s):  
V. V. Panikarovskii ◽  
E. V. Panikarovskii

A brief review of the work on intensifying the inflow and increasing the oil recovery of the Neocomian deposits of the Priobskoye field is expounded. The analysis of technologies for increasing oil recovery of AS10, AS11, AS12 is performed. The technology of hydraulic fracturing in production and injection wells and methods of selecting wells for hydraulic fracturing in the operational well stock of the Priobskoye field are considered. Based on the analysis of enhanced oil recovery technologies, the need for hydraulic fracturing in low-productivity reservoirs has been proved.


2021 ◽  
Vol 11 (5) ◽  
pp. 13432-13452

In recent years, research activity to increase oil recovery from hydrocarbon reservoirs by smart water (SW) injection has risen sharply. Smart water injection is one of the most efficient and low-cost methods in the improved and enhanced oil recovery (IOR/EOR) process. One of the active mechanisms of smart water to increase the oil production is wettability alteration of the rock surface from oil-wet to water-wet conditions. Recently smart water injection into unconsolidated sandstone reservoirs due to disturbance of the rock surface equilibrium causes instability of formation particles and sand production. One of the main factors disturbing the equilibrium and sand production is the sandstone surface's wettability alteration mechanism caused by disjoining pressure and stresses on the rock surface. Reduction of the reservoir permeability and closure of fluid flow paths and consequent reduction of oil production are among the main damages of sand production. In this study, a complete study on optimum smart water design based on the least sedimentation due to mixing has been done by formation water compatibility tests and analysis on divalent ions through the Taguchi design. Then the water wet sandstones were converted to oil-wet condition by model oil (stearic acid + normal heptane) in different concentrations. The wettability effect of water wet, neutral wet oil-wet on the amount of sand production in the presence of smart water in the reservoir conditions was fully investigated. To prevent sand production, a very effective chemical method of nanoparticles was used. By stabilizing silica nanoparticles (SiO2) with an optimum concentration of 2000 ppm in smart water (pH = 8), according to the results of the zeta potential and Dynamic light scattering (DLS) test, the effect of wettability on sand production in the presence of smart nanofluid was fully investigated. The test results show a significant reduction in sand production and a rapid wettability alteration towards smart nanofluids' water-wet conditions. This indicates the improvement of fluid for enhanced oil recovery processes in unconsolidated sandstone reservoirs.


Sign in / Sign up

Export Citation Format

Share Document