scholarly journals The Effect of Coconut Fibres, Banana Trunk Peel and Baggasse on the Lost Circulation of the Drilling Mud

Author(s):  
Rizki Akbar ◽  
Abdul Hamid ◽  
Ratnayu Sitaresmi

<p>Lost Circulation Materials (LCM) are specially designed not to damage the penetrating formation during handling of loss circulation problems and are very effective for drilling operations worldwide. Optimization of LCM composition may stop loss circulation effectively and protect the production zone from the invasion of mud filtrate. The concentration of lost circulation  materials (LCM) is a key parameter to determine the effectiveness of LCM. In this study, laboratory equipment such as the Hamilton beech mixer, Fann VG meter and API filter press are used to evaluate the effectiveness of various LCMs in dealing with loss circulation. In this research, coconut fibre, banana tree skin, and bagasse are used as LCM in various concentrations. The mud losses were simulated using an 80 mesh shaker. The quality of the muddy rheological properties was<br />the basic parameters to be evaluated. The test was carried out at 80oF and 200oF. The experimental results show that bagasse has the best performance both at 80oF and 200oF as LCM compared withcoconut fibres and banana trunk. The lost circulation of  mud filtrate at 80oF and 200oF due to the addition of 2 gram bagasse is 34 ml and 40 ml, respectively.</p>

2015 ◽  
Vol 1119 ◽  
pp. 564-568
Author(s):  
Nurul Aimi Ghazali ◽  
M.Y.M. Yusof ◽  
A. Azizi ◽  
T.A.T. Mohd ◽  
N. Alias ◽  
...  

Lost circulation is one of the most troublesome problems encountered in drilling due to uncontrolled flow of drilling mud into the formation that likely to happen due to ineffective filter cake. The smaller particles of drilling mud are able to break through into the larger void spaces in the formation which lead to lost circulation. Hence, fibrous materials in apple skin being identified to be used as lost circulation material (LCM) in drilling mud to prevent loss of circulation. Mud rheology tests and API filter press test are performed on the apple skin in drilling mud to find out the potential of fiber in apple skin to be used as LCM. From the mud rheology test, it was found that the specific gravity does not affected by the increasing concentration of apple skin and only a slight reduction in pH value to the acidic condition of the apple skin. As for API filter press test, the additions of apple skin in mud reduced the mud filtrate and increase the mud cake formation thickness. Apple skin fibers have a potential to be used as LCM in drilling mud due to the ability in reducing the mud filtrate and increasing the mud cake thickness that will prevents mud lost circulation problem to happen.


2014 ◽  
Vol 911 ◽  
pp. 243-247 ◽  
Author(s):  
N.A. Ghazali ◽  
T.A.T. Mohd ◽  
N. Alias ◽  
M.Z. Shahruddin ◽  
A. Sauki ◽  
...  

Lost circulation materials (LCM) are used to combat mud loss to the reservoir formation which can cause problems during drilling operation. Difficulties in handling and costly are those challenges faced by drilling operator. Mostly LCM can work better in water based mud compared to oil based mud due to characteristic of LCM itself. Nowadays, most of operator interested in the ultra-deep water due to the limitation of reservesand deals with high temperature and high pressure conditions.Oil based mud (OBM) is more preferable in high temperature conditions compared to water based mud hence a laboratory study was carried out to investigate the effect of temperature on the performance of lemongrass with different sizes in oil based mud. The oil based mud was formulated and tested with three different temperatures which are 250oF, 275oF and 350oF. The lemongrass LCM was prepared with three different sizes which are 150 microns, 250 microns and 500 microns. The sizes distribution of LCM is one of the main contributors to the success of LCM in the formation. The oil based mud samples were tested using Fann Viscometer to determine rheology properties and HPHT Filter Press to investigate the amount of filtrate. It was found that different temperatures and sizes have great effects on the lemongrass LCM in the oil based mud. The optimum temperature for lemongrass LCM is 275oF and with the sizes of 250 microns.


Author(s):  
Samuel Renjaan ◽  
Sugiatmo Kasmungin ◽  
Abdul Hamid

<p>The quality of cement is very important because it will greatly help the production well activities especially to make the construction of wells can last long. In this study the influence of lost circulation material (LCM) was analyzed, such as Bagasse, Coconut Fibers, Banana Tree Bark and Sawdust on the physical properties of G-class cement such as rheology, density, free water content, thickening time, and compressive strength. This research was conducted in the laboratory by varying the percentage of LCM from 0% to 6% and temperature from 95oF to 200oF. From this research, it can be known <br />that the addition of LCM can change the physical properties of cement. The highest increase of plastic viscosity (PV) and yield point (YP) values was occurred at 6% concentration of Bagasse, Coconut Fibers, Banana Tree Bark and Sawdust that was 105 cp – 92 lbs/100ft2, 105 cp – 90 lbs/100ft2, 90 cp – 110 lbs/100ft2, and 95 cp – 110 lbs/ft2. The longest thickening time was occurred at 6% concentration of Bagasse, Coconut Fibers, Banana Tree Bark and Sawdust with a soaking temperature of 200 oF which that was 65 minutes, 60 minutes, 66 minutes, and 63 minutes. The highest reduction of density <br />value occured at 6% concentration of Bagasse, Coconut Fibers, Banana Tree Bark and Sawdust that was 15.0 ppg, 15.2 ppg, 15.2 ppg and 15.0 ppg. The decrease in the highest free water content value occurs with the addition of 6% in each type of LCM, namely 0.9 ml, 0.95 ml, 0.9 ml and 1 ml. The increase in the strong press rate occurs in the addition of 1% sugar cane, which is 2838 psi; 1% Coconut fibre is 2926 psi, 0.5% of the banana tree bark is 3080 psi and 1% of sawdust is 2728 psi all at 200 º temperature.</p>


2015 ◽  
Vol 1113 ◽  
pp. 648-653 ◽  
Author(s):  
Nurul Aimi Ghazali ◽  
M.Z.M. Jaih ◽  
T.A.T. Mohd ◽  
Nur Hashimah Alias ◽  
Azlinda Azizi ◽  
...  

When drill in a highly permeable zone the common problem faced by the operator is lost circulation of drilling mud into the formation. Lost circulation of mud are costly and therefore lost circulation materials (LCM) being introduced to the mud formulation to prevent lost circulation from the formation. Since Malaysia is the one of the major country producer of Palm kernel Oil (PKO) with the high production of crude fibre from palm kernel (palm kernel expeller), thus this study was carried out to determine the ability of Palm Kernel Expeller (PKE) to be used as LCM in drilling mud. PKE used was in granule form by cause of pressing under high pressure compress to remove palm oil. Rheological and API filtration test were carried to determine the characteristic PKE in drilling mud. Water based mud (WBM) sample was used in this study with four (4) different concentration of PKE. The results show the filter cake formed was improved as the concentration increased and the filtrate loss reduced. SEM data also shows the ability of PKE to form a bridge across the pore thus reducing the loss of filtration.


SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 405-415 ◽  
Author(s):  
Swaminathan Ponmani ◽  
R.. Nagarajan ◽  
Jitendra S. Sangwai

Summary The challenges in drilling problems such as formation damage, pipe sticking, lost circulation, poor hole cleaning, and fluid loss need better solutions. Nanotechnology, by means of nanofluids, provides potential solutions for the development of improved water-based mud (WBM). This work presents the use of nanofluids of CuO and ZnO prepared in various base fluids, such as xanthan gum, polyethylene glycol, and polyvinylpyrrolidone (PVP), which are commonly used in oilfield operations, for the development of nanofluid-enhanced drilling mud (NWBM). In this paper, formulations of various nanofluids with varying concentrations of nanoparticles, such as 0.1, 0.3, and 0.5 wt%, were investigated for their effect on the thermal, electrical, and fluid-loss properties of NWBM. In addition, these results also were compared with those obtained with microfluids of CuO and ZnO for the microfluid-enhanced drilling mud (MWBM) to understand the effect of particle size. It is observed that the use of nanofluids in WBM helps to improve their thermal properties, with an associated direct impact on their cooling efficiency at downhole and surface conditions compared with those using microfluid. Filtration-loss and filter-cake-thickness studies on WBM, MWBM, and NWBM were also carried out with an American Petroleum Institute (API) filter press. It is observed that the fluid loss decreases with addition of the nanofluids and microfluids in WBM, with nanofluids showing an improved efficacy over microfluids. The studies, in general, bear testimony to the efficacy of nanofluids in the development of next-generation improved water-based drilling fluids suitable for efficient drilling.


SPE Journal ◽  
2017 ◽  
Vol 22 (04) ◽  
pp. 1178-1188 ◽  
Author(s):  
Amin Mehrabian ◽  
Younane Abousleiman

Summary Wellbore tensile failure is a known consequence of drilling with excessive mud weight, which can cause costly events of lost circulation. Despite the successful use of lost-circulation materials (LCMs) in treating lost-circulation events of the drilling operations, extensions of wellbore-stability models to the case of a fractured and LCM-treated wellbore have not been published. This paper presents an extension of the conventional wellbore-stability analysis to such circumstances. The proposed wellbore geomechanics solution revisits the criteria for breakdown of a fractured wellbore to identify an extended margin for the equivalent circulation density (ECD) of drilling. An analytical approach is taken to solve for the related multiscale and nonlinear problem of the three-way mechanical interaction between the wellbore, fracture wings, and LCM aggregate. The criteria for unstable propagation of existing near-wellbore fractures, together with those for initiating secondary fractures from the wellbore, are obtained. Results suggest that, in many circumstances, the occurrence of both incidents can be prevented, if the LCM blend is properly engineered to recover certain depositional and mechanical properties at downhole conditions. Under such optimal design conditions, the maximum ECD to which the breakdown limit of a permeable formation could be enhanced is predicted.


Sign in / Sign up

Export Citation Format

Share Document