Effect of Nanofluids of CuO and ZnO in Polyethylene Glycol and Polyvinylpyrrolidone on the Thermal, Electrical, and Filtration-Loss Properties of Water-Based Drilling Fluids

SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 405-415 ◽  
Author(s):  
Swaminathan Ponmani ◽  
R.. Nagarajan ◽  
Jitendra S. Sangwai

Summary The challenges in drilling problems such as formation damage, pipe sticking, lost circulation, poor hole cleaning, and fluid loss need better solutions. Nanotechnology, by means of nanofluids, provides potential solutions for the development of improved water-based mud (WBM). This work presents the use of nanofluids of CuO and ZnO prepared in various base fluids, such as xanthan gum, polyethylene glycol, and polyvinylpyrrolidone (PVP), which are commonly used in oilfield operations, for the development of nanofluid-enhanced drilling mud (NWBM). In this paper, formulations of various nanofluids with varying concentrations of nanoparticles, such as 0.1, 0.3, and 0.5 wt%, were investigated for their effect on the thermal, electrical, and fluid-loss properties of NWBM. In addition, these results also were compared with those obtained with microfluids of CuO and ZnO for the microfluid-enhanced drilling mud (MWBM) to understand the effect of particle size. It is observed that the use of nanofluids in WBM helps to improve their thermal properties, with an associated direct impact on their cooling efficiency at downhole and surface conditions compared with those using microfluid. Filtration-loss and filter-cake-thickness studies on WBM, MWBM, and NWBM were also carried out with an American Petroleum Institute (API) filter press. It is observed that the fluid loss decreases with addition of the nanofluids and microfluids in WBM, with nanofluids showing an improved efficacy over microfluids. The studies, in general, bear testimony to the efficacy of nanofluids in the development of next-generation improved water-based drilling fluids suitable for efficient drilling.

2021 ◽  
Vol 11 (4) ◽  
pp. 1715-1726
Author(s):  
Ved Prakash ◽  
Neetu Sharma ◽  
Munmun Bhattacharya ◽  
Ashok Raina ◽  
Man Mohan Gusain ◽  
...  

AbstractThis work investigates the efficacy of a biodegradable natural product, litchi leaves powder (LLP) as a filtration loss control agent in the water-based drilling fluid formulations. In order to evaluate the potential of litchi leaves powder (LLP), a strict protocol of experimentations according to API (American Petroleum Institute) standard has been followed. The experimental outcome showed that before hot rolling and after hot rolling of mud samples at 100 °C it was observed that 3–5% Concentration of LLP significantly increased the rheological parameters such as PV, YP and gelation of drilling fluid as compared to reference mud. Also, LLP reformed the filtration loss control characterization, suggesting a better biodegradable fluid loss reducing agent. After hot rolling at 100 °C for 18 h, the water-based drilling fluid with LLP as an additive showed a marked reduction in filtration control property as compared to reference Mud (RM). Experimental results concluded that 5% concentration of LLP significantly reduced the filtration loss of drilling fluid by 70.6% as compared to reference mud under the influence of 100 psi pressure. However, the conventional fluid loss additive CMC (LVG) reduced the filtration loss by maximum 67.5% as compared to reference mud. Therefore, LLP can be used as an alternative to CMC (LVG) in water-based drilling fluid with a maximum subsurface temperature of 100 °C.


SPE Journal ◽  
2022 ◽  
pp. 1-17
Author(s):  
Emanuel Ricky ◽  
Musa Mpelwa ◽  
Chao Wang ◽  
Bahati Hamad ◽  
Xingguang Xu

Summary Drilling fluid rheology and fluid loss property are fundamental parameters that dictate the effectiveness and easiness of a drilling operation. Maintaining these parameters under high temperatures is technically challenging and has been an exciting research area for the drilling industry. Nonetheless, the use of drilling mud additives, particularly synthetic polymers, threaten ecological environments. Herein, modified corn starch (MCS) was synthesized, characterized, and investigated as an environmentally friendly rheology enhancer and filtration loss controlling agent for water-based mud (WBM) at high temperatures. The experimental results indicated that MCS exhibits better performance in improving rheological properties and fluid loss controlling ability for WBM than the commonly used mud additives. With the addition of an optimal concentration (0.3 wt%), MCS improved the rheology and fluid loss behavior of WBM formulation at harsh aging temperature (220°C) by practically 4 times and 1.7 times, respectively. The MCS was revealed to perform superbly over polyanionic cellulose (PAC) addition at all investigated temperatures. The better performance of the MCS was ascribed to the improved entanglements in the mud system owing to the additional hydroxyl (OH) groups. Besides, the Herschel-Bulkley model was found to be a constitutive model that described the rheological properties of the investigated muds satisfactorily. Moreover, the MCS was found to exhibit acceptable biodegradability properties.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3120
Author(s):  
Xianfeng Tan ◽  
Longchen Duan ◽  
Weichao Han ◽  
Ying Li ◽  
Mingyi Guo

To overcome the negative impact on the rheological and filtration loss properties of drilling fluids caused by elevated temperature and salts contamination, which are common in ultradeep or geothermal drilling operations, it is imperative to develop highly efficient additives used in the water-based drilling fluid. In this study, a zwitterionic copolymer P (AM/DMC/AMPS/DMAM, ADAD) was synthesized by using acrylamide (AM), cationic monomer methacrylatoethyl trimethyl ammonium chloride (DMC), anionic monomer 2-acrylamide-2-methyl propane sulfonic acid (AMPS), and N,N-dimethylacrylamide (DMAM) through free radical copolymerization. The copolymer was characterized by 1H Nuclear Magnetic Resonance (NMR), Fourier transform infrared spectroscopy (FTIR), elemental analysis, thermogravimetric analysis (TGA), and zeta potential. The rheological behavior, filtration properties, and the performance exposure to salt or calcium contamination in water-based drilling fluid were investigated. The bentonite/polymer suspension showed improved rheological and filtration properties even after aging at 160 °C or a high concentration of salt and calcium. The filtration loss can be greatly reduced by more than 50% (from 18 mL to 7 mL) by the inclusion of 2.0 wt% copolymer, while a slight increase in the filtrate loss was observed even when exposed to electrolyte contamination. Particle size distribution and zeta potential further validate the idea that zwitterionic copolymer can greatly improve the stability of base fluid suspension through positive group enhanced anchoring on the clay surface and repulsion force between negative particles. Moreover, this study can be directed towards the design and application of zwitterionic copolymer in a water-based drilling fluid.


2021 ◽  
Vol 11 (1) ◽  
pp. 137-145
Author(s):  
Hani Ali Al Khalaf ◽  
Zeeshan Ahmad ◽  
Gabriella Kovácsné Federer

This study aims to evaluate the effect of wheat flour as a natural and environmentally friendly material on the properties of water-based mud. Recently, many experiments have been conducted with various additives to improve the properties of drilling fluids. The effect of using wheat flour as a new additive to drilling fluid was studied to improve rheological and filtration properties. In the laboratory several samples of water-based mud were prepared, different concentrations of wheat flour from 1 wt% to 7 wt% were added to the mud and tested by using a Fann 35 viscometer, 140 Fann Mud balance, and an API LT-LP filter press. The results showed that adding 7 wt% of wheat flour was the optimal concentration. It was found that the apparent viscosity and yield point increased by 50% and 35%, respectively, when 7 wt% of wheat flour was added to the water-based drilling fluid. Likewise, the fluid loss rate was reduced by 25% when using the same concentration of wheat flour.


SPE Journal ◽  
2014 ◽  
Vol 19 (06) ◽  
pp. 1184-1191 ◽  
Author(s):  
H.. Guo ◽  
J.. Voncken ◽  
T.. Opstal ◽  
R.. Dams ◽  
P.L.J.. L.J. Zitha

Summary Fluid-loss control is an essential property of oil-based mud (OBM) that can affect the success of drilling operations. This paper presents an investigation of the mitigation of lost circulation in OBM by use of leakoff-control-additive gilsonite. A simple physical model was developed to describe the static-filtration process considering the formation and properties of the filter cake. Both high-pressure/high-temperature (HP/HT) American Petroleum Institute (API) press and core-flow-filtration experiments were performed to evaluate the leakoff behavior of OBM. Core-filtration experiments were carried with the aid of a computerized-tomography (CT) scanner to monitor the invasion of the filtrate into the sandstone core at time intervals. In the long time limit, the model predicts that the fluid loss follows the classical Carter equation; that is, the volume of leakoff increases as the square root of time for the static filtration through a filter paper and through the sandstone core. Dual-mode filtration diminishes the rate of fluid loss considering the effect of emulsion. The model also provides a relation between pressure drop and filtrate rate, which can be used to estimate the permeability of filter cake in the experiment. The leakoff behavior with additive observed in the experiment is well-explained by the microstructure of rapid-buildup filter cake, which is mainly responsible for the control of fluid loss. The role of different components of OBM, such as solid particles, emulsion droplets, and additives, is discussed in light of our observations.


2014 ◽  
Vol 911 ◽  
pp. 243-247 ◽  
Author(s):  
N.A. Ghazali ◽  
T.A.T. Mohd ◽  
N. Alias ◽  
M.Z. Shahruddin ◽  
A. Sauki ◽  
...  

Lost circulation materials (LCM) are used to combat mud loss to the reservoir formation which can cause problems during drilling operation. Difficulties in handling and costly are those challenges faced by drilling operator. Mostly LCM can work better in water based mud compared to oil based mud due to characteristic of LCM itself. Nowadays, most of operator interested in the ultra-deep water due to the limitation of reservesand deals with high temperature and high pressure conditions.Oil based mud (OBM) is more preferable in high temperature conditions compared to water based mud hence a laboratory study was carried out to investigate the effect of temperature on the performance of lemongrass with different sizes in oil based mud. The oil based mud was formulated and tested with three different temperatures which are 250oF, 275oF and 350oF. The lemongrass LCM was prepared with three different sizes which are 150 microns, 250 microns and 500 microns. The sizes distribution of LCM is one of the main contributors to the success of LCM in the formation. The oil based mud samples were tested using Fann Viscometer to determine rheology properties and HPHT Filter Press to investigate the amount of filtrate. It was found that different temperatures and sizes have great effects on the lemongrass LCM in the oil based mud. The optimum temperature for lemongrass LCM is 275oF and with the sizes of 250 microns.


2016 ◽  
Vol 78 (8) ◽  
Author(s):  
Nor Fatihah Abdul Majid ◽  
Issham Ismail ◽  
Mohd Fauzi Hamid

Lost circulation is one of the drilling operational problems. It refers to the total or partial loss of drilling fluid into highly permeable zones or natural or induced fractures. This problem is likely to occur when the hydrostatic head pressure of drilling fluid in the hole exceeds the formation pressure. Today, managing lost circulation remains a significant challenge to oilwell drilling operations because it may contribute to high non-productive time. It is imperative to note that the overbalance pressure situation also can cause the invasion of mud filtrate into production zones which will result in formation damage. To address these problems, an experimental investigation has been done on durian rind as an alternative fluid loss and lost circulation materials in water-based mud. Durian rind was selected as a mud loss control material because it contains close to 20% pectin which may complement the formation of high quality mat-like bridges across openings of the formation. The test involved the use of standard mud testing equipment and a lost circulation test cell. Durian rind powder was prepared by cleaning and cutting the durian rind into small pieces of 1 to 2 cm, and then dried them in an oven at 60°C for 48 hours before grinding into five different sizes from coarse to ultra-fine while Hydro-plug, the commercial lost circulation material was supplied by Scomi Energy. The fluid loss test was conducted using a standard low pressure filter press while the bridging test was carried out at 100 psi of pressure difference and ambient temperature using a lost circulation cell. Fine durian in the water-based mud gave the best fluid loss control compared to coarse durian rind, fine and coarse Hydro-plug. The experimental results also showed that at 15 lb/bbl (42.8 kg/m3) optimum concentration, coarse and intermediate durian rind have outperformed Hydro-plug by showing an excellent control of mud losses in 1 and 2 mm simulated fractures.


Author(s):  
Aliyu Adebayo Sulaimon ◽  
Sarah Abidemi Akintola ◽  
Mohd Adam Bin Mohd Johari ◽  
Sunday Oloruntoba Isehunwa

Abstract The use of carboxymethyl cellulose (CMC) in oil and gas well drilling operations has improved the filtration loss and mud cake properties of drilling muds. The introduction of starch has also reduced, for example, the viscosity, fluid loss, and mud cake properties of the  drilling fluids. However, normal starch has some drawbacks such as low shear stress resistance, thermal decomposition, high retrogradation, and syneresis. Hence, starch modification, achieved through acetylation and carboxymethylation, has been introduced to overcome these limitations. In this study, modified starches, from cassava and maize, were used to enhance the properties of water-based muds under high-pressure high temperature (HPHT) conditions, and their performances were compared with that of the CMC. The mud samples added with acetylated cassava or maize starch exhibited the smallest filtrate volumes and filtrate losses within the American Petroleum Institute specification. Therefore, these modified starch-added muds could replace CMC as fluid loss agents since, unlike it, they can withstand HPHT conditions.


2020 ◽  
Vol 5 (10) ◽  
pp. 1269-1273
Author(s):  
Godwin Chukwuma Jacob Nmegbu ◽  
Bright Bariakpoa Kinate ◽  
Bari-Agara Bekee

The extent of damage to formation caused by water based drilling mud containing corn cob treated with sodium hydroxide to partially replace polyanionic cellulose (PAC) as a fluid loss control additive has been studied. Core samples were obtained from a well in Niger Delta for this study with a permeameter used to force the drilling mud into core samples at high pressures. Physio-chemical properties (moisture content, cellulose and lignin) of the samples were measured and the result after treatment showed reduction. The corn cob was combined with the PAC in the ratio of 25-75%, 50-50% and 75-25% in the mud. Analyzed drilling mud rheological properties such as plastic viscosity, apparent viscosity, yield point and gel strength all decreased as percentage of corn cob increased in the combination and steadily decreased as temperature increased to 200oF. Measured fluid loss and pH of the mud showed an increase in fluid loss and pH in mud sample with 100% corn cob. The extent of formation damage was determined by the differences in the initial and final permeability of the core samples. Experimental data were used to develop analytical models that can serve as effective tool to predict fluid loss, rheological properties of the drilling mud at temperature up to 200oF and percentage formation damage at 100 psi.


Sign in / Sign up

Export Citation Format

Share Document