The Effects of Temperature on Rheology Properties and Filtrate after Using Lemongrass as Lost Circulation Materials for Oil Based Drilling Mud

2014 ◽  
Vol 911 ◽  
pp. 243-247 ◽  
Author(s):  
N.A. Ghazali ◽  
T.A.T. Mohd ◽  
N. Alias ◽  
M.Z. Shahruddin ◽  
A. Sauki ◽  
...  

Lost circulation materials (LCM) are used to combat mud loss to the reservoir formation which can cause problems during drilling operation. Difficulties in handling and costly are those challenges faced by drilling operator. Mostly LCM can work better in water based mud compared to oil based mud due to characteristic of LCM itself. Nowadays, most of operator interested in the ultra-deep water due to the limitation of reservesand deals with high temperature and high pressure conditions.Oil based mud (OBM) is more preferable in high temperature conditions compared to water based mud hence a laboratory study was carried out to investigate the effect of temperature on the performance of lemongrass with different sizes in oil based mud. The oil based mud was formulated and tested with three different temperatures which are 250oF, 275oF and 350oF. The lemongrass LCM was prepared with three different sizes which are 150 microns, 250 microns and 500 microns. The sizes distribution of LCM is one of the main contributors to the success of LCM in the formation. The oil based mud samples were tested using Fann Viscometer to determine rheology properties and HPHT Filter Press to investigate the amount of filtrate. It was found that different temperatures and sizes have great effects on the lemongrass LCM in the oil based mud. The optimum temperature for lemongrass LCM is 275oF and with the sizes of 250 microns.

Author(s):  
Rizki Akbar ◽  
Abdul Hamid ◽  
Ratnayu Sitaresmi

<p>Lost Circulation Materials (LCM) are specially designed not to damage the penetrating formation during handling of loss circulation problems and are very effective for drilling operations worldwide. Optimization of LCM composition may stop loss circulation effectively and protect the production zone from the invasion of mud filtrate. The concentration of lost circulation  materials (LCM) is a key parameter to determine the effectiveness of LCM. In this study, laboratory equipment such as the Hamilton beech mixer, Fann VG meter and API filter press are used to evaluate the effectiveness of various LCMs in dealing with loss circulation. In this research, coconut fibre, banana tree skin, and bagasse are used as LCM in various concentrations. The mud losses were simulated using an 80 mesh shaker. The quality of the muddy rheological properties was<br />the basic parameters to be evaluated. The test was carried out at 80oF and 200oF. The experimental results show that bagasse has the best performance both at 80oF and 200oF as LCM compared withcoconut fibres and banana trunk. The lost circulation of  mud filtrate at 80oF and 200oF due to the addition of 2 gram bagasse is 34 ml and 40 ml, respectively.</p>


2015 ◽  
Vol 1113 ◽  
pp. 648-653 ◽  
Author(s):  
Nurul Aimi Ghazali ◽  
M.Z.M. Jaih ◽  
T.A.T. Mohd ◽  
Nur Hashimah Alias ◽  
Azlinda Azizi ◽  
...  

When drill in a highly permeable zone the common problem faced by the operator is lost circulation of drilling mud into the formation. Lost circulation of mud are costly and therefore lost circulation materials (LCM) being introduced to the mud formulation to prevent lost circulation from the formation. Since Malaysia is the one of the major country producer of Palm kernel Oil (PKO) with the high production of crude fibre from palm kernel (palm kernel expeller), thus this study was carried out to determine the ability of Palm Kernel Expeller (PKE) to be used as LCM in drilling mud. PKE used was in granule form by cause of pressing under high pressure compress to remove palm oil. Rheological and API filtration test were carried to determine the characteristic PKE in drilling mud. Water based mud (WBM) sample was used in this study with four (4) different concentration of PKE. The results show the filter cake formed was improved as the concentration increased and the filtrate loss reduced. SEM data also shows the ability of PKE to form a bridge across the pore thus reducing the loss of filtration.


SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 405-415 ◽  
Author(s):  
Swaminathan Ponmani ◽  
R.. Nagarajan ◽  
Jitendra S. Sangwai

Summary The challenges in drilling problems such as formation damage, pipe sticking, lost circulation, poor hole cleaning, and fluid loss need better solutions. Nanotechnology, by means of nanofluids, provides potential solutions for the development of improved water-based mud (WBM). This work presents the use of nanofluids of CuO and ZnO prepared in various base fluids, such as xanthan gum, polyethylene glycol, and polyvinylpyrrolidone (PVP), which are commonly used in oilfield operations, for the development of nanofluid-enhanced drilling mud (NWBM). In this paper, formulations of various nanofluids with varying concentrations of nanoparticles, such as 0.1, 0.3, and 0.5 wt%, were investigated for their effect on the thermal, electrical, and fluid-loss properties of NWBM. In addition, these results also were compared with those obtained with microfluids of CuO and ZnO for the microfluid-enhanced drilling mud (MWBM) to understand the effect of particle size. It is observed that the use of nanofluids in WBM helps to improve their thermal properties, with an associated direct impact on their cooling efficiency at downhole and surface conditions compared with those using microfluid. Filtration-loss and filter-cake-thickness studies on WBM, MWBM, and NWBM were also carried out with an American Petroleum Institute (API) filter press. It is observed that the fluid loss decreases with addition of the nanofluids and microfluids in WBM, with nanofluids showing an improved efficacy over microfluids. The studies, in general, bear testimony to the efficacy of nanofluids in the development of next-generation improved water-based drilling fluids suitable for efficient drilling.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Chinedum Peter Ezeakacha ◽  
Saeed Salehi

Drilling mud loss in highly porous media and fractured formations has been one of the industry's focuses in the past decades. Wellbore dynamics and lithology complexities continue to push for more research into accurate quantification and mitigation strategies for lost circulation and mud filtration. Conventional methods of characterizing mud loss with filtration data for field application can be time-consuming, particularly because of the interaction between several factors that impact mud loss and filtration. This paper presents a holistic engineering approach for characterizing lost circulation using pore-scale dynamic water-based mud (WBM) filtration data. The approaches used in this study include: factorial design of experiment (DoE), hypothesis testing, analysis of variance (ANOVA), and multiple regression analysis. The results show that an increase in temperature and rotary speed can increase dynamic mud filtration significantly. An increase in lost circulation material (LCM) concentration showed a significant decrease dynamic mud filtration. A combination of LCM concentration and rotary speed showed a significant decrease in dynamic mud filtration, while a combination of LCM concentration and temperature revealed a significant increase in dynamic mud filtration. Rotary speed and temperature combination showed an increase in dynamic mud filtration. The combined effect of these three factors was not significant in increasing or decreasing dynamic mud filtration. For the experimental conditions in this study, the regression analysis for one of the rocks showed that dynamic mud filtration can be predicted from changes in LCM concentration and rotary speed. The results and approach from this study can provide reliable information for drilling fluids design and selecting operating conditions for field application.


Author(s):  
Mingzheng Yang ◽  
Yuanhang Chen ◽  
Frederick B. Growcock ◽  
Feifei Zhang

Abstract Drilling-induced lost circulation should be managed before and during fracture initiation rather than after they propagate to form large fractures and losses become uncontrollable. Recent studies indicated the potentially critical role of filtercake in strengthening the wellbore through formation of a pressure-isolating barrier, as well as plugging microfractures during fracture initiation. In this study, an experimental investigation was conducted to understand the role played by filtercake in the presence of lost circulation materials (LCMs). A modified permeability plugging apparatus (PPA) with slotted discs was used to simulate whole mud loss through fractures of known width behind filtercake. Cumulative fluid loss upon achieving a complete seal and the maximum sealing pressure were measured to evaluate the combined effects of filtercake and LCMs in preventing and reducing fluid losses. The effects of some filtercake properties (along with LCM type, concentration and particle size distribution) on filtercake rupture and fracture sealing were investigated. The results indicate that filtercake can accelerate fracture sealing and reduce total mud loss. Efficiently depositing filtercake while drilling can reduce the concentration of LCM that is required to plug and isolate incipient fractures.


Zygote ◽  
2015 ◽  
Vol 24 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Marcella Costa Radael ◽  
Leonardo Demier Cardoso ◽  
Dalcio Ricardo de Andrade ◽  
André Veloso Ferreira ◽  
Douglas da Cruz Mattos ◽  
...  

SummaryThe present study aimed to provide data on the time required for Melanotaenia boesemani to complete embryonic development, and to investigate the influence that incubation at different temperatures caused in this species. The effects of temperature on the time and hatching rate are presented, as well as information related to embryonic development stages. After fertilization, the eggs were kept in incubators at 23, 26, 29 or 32°C and observed at predetermined times until the moment of hatching. Stages of development were identified and classified according to morphological and physiological characteristics. Oil droplets were visualized inside the eggs as well as filament adhesion present at the chorion. Embryonic development was similar to that observed in other species of the genus Melanotaenia with hatching and faster development in higher temperatures.


2010 ◽  
Vol 129-131 ◽  
pp. 230-234
Author(s):  
Ying Ying Zhang ◽  
Qi Lin Zhang ◽  
Chuan Zhi Zhou ◽  
Ying Zhou

As composite, the mechanical properties of coated fabrics are sensitive to environment. This paper presented mechanical properties under different environments. A list of uniaxial tests are carried out under different temperatures including -20°C, 0°C, 23°C, 50°C, and 70°C. First, the tensile behaviors at room temperature and the failure behaviors are studied. Then, the effects of temperature on mechanical properties are determined. Finally, the effects of water immersion on mechanical properties are discussed. Results show PTFE coated fabrics remained unchanged in varying temperature and humidity. The temperature has effects on the mechanical properties of PVC coated fabrics. With increasing temperature, the strength decrease and the strain at break increase. The temperature induction factors are proposed for the design and analysis. The water immersion has little effect on the mechanical properties because of the impervious coating.


2020 ◽  
Vol 10 (8) ◽  
pp. 3389-3397 ◽  
Author(s):  
Nayem Ahmed ◽  
Md. Saiful Alam ◽  
M. A. Salam

Abstract Loss of drilling fluid commonly known as mud loss is considered as one of the critical issues during the drilling operation as it can cause severe formation damage. To minimize fluid loss, researchers introduced numerous additives but did not get the expected result. Recently, the use of nanoparticles (NPs) in drilling fluid gives a new hope to control the fluid loss. A basic KCl–Glycol–PHPA polymer-based mud is made, and six different concentrations of 0.1, 0.5, 1.0, 1.5, 2.0, 3.0 wt% iron (III) oxide or Hematite (Fe2O3) NPs are mixed with the basic mud. The experimental observations reveal that fluid loss of basic mud is 5.9 ml after 30 min and prepared nano-based drilling mud results in a less fluid loss at all concentrations. Nanoparticles with a concentration of 0.5 wt% result in a 5.1 ml fluid loss at the API LTLP filter press test. On the other hand, nanoparticles with a concentration of 3.0 wt% enhance the plastic viscosity, yield point, and 10 s gel strength by 15.0, 3.0, and 12.5%, respectively. The optimum concentration of hematite NPs is found to be 0.5 wt% which reduces the API LPLT filtrate volume and filter cake thickness by 13.6 and 40%, respectively, as well as an improvement of plastic viscosity by 10%.


Sign in / Sign up

Export Citation Format

Share Document