Strain Rate Effect on Four-Step Three-Dimensional Braided Composite Compressive Behavior.

AIAA Journal ◽  
2005 ◽  
Vol 43 (5) ◽  
pp. 994-999 ◽  
Author(s):  
Baozhong Sun ◽  
Liu Yang ◽  
Bohong Gu
2015 ◽  
Vol 132 ◽  
pp. 644-651 ◽  
Author(s):  
Yong Tao ◽  
Mingji Chen ◽  
Haosen Chen ◽  
Yongmao Pei ◽  
Daining Fang

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xianglong Li ◽  
Zihao Tao ◽  
Jianguo Wang ◽  
Ting Zuo ◽  
Jun Ma ◽  
...  

In order to study the influence of pillar stopping blasting on the stability of cemented backfill, the dynamic impact test under low strain rate (61.1∼86.8 s−1) was conducted on cemented backfill with two kinds of strength using three-dimensional coupled static-dynamic SHPB equipment. At the same time, the strain rate effect of failure mode, dynamic strength factor, and energy transfer of backfill were analyzed. The results show that when the cemented backfill was loaded under different strain rates in the initial three-dimensional static pressure environment, the pore compaction process was no longer obvious but directly entered the elastic deformation stage. Within the range of strain rates, the extreme value of dynamic intensity factor (DIF) of CTB230 was 6.8, while the extreme value of dynamic intensity factor of CTB310 specimen did not appear within the range of strain rates due to the improvement of the internal cementation force between particles. The fracture surfaces of specimens were perpendicular to the direction of load, and the failure mode was mainly the axial tensile failure, and the fracture surfaces were mostly close to the loading end. According to energy calculation, reflected energy accounts for 80.4%∼86.6% of incident energy; dissipated energy, 5.5%∼14.3%; transmitted energy, 5.3%∼7.9%.


2011 ◽  
Vol 243-249 ◽  
pp. 5845-5848
Author(s):  
Wen Ming Wang ◽  
Hong Nan Li ◽  
Guo Huan Liu ◽  
Li Tian

Using ABAQUS software, three dimensional finite element model of a transmission tower-line system is created. Nonlinear seismic responses under three seismic records with and without strain rate effect are studied. The results show that the strain rate effect on the transmission tower-line system is more obvious with an increase in intensity of the earthquake. The influence of strain rate on the top displacement and base shear of tower under certain seismic records is unneglectable. Also, it is shown that the strain rate effect on the deformation of wire is prominent. The strain rate effect on the axial force of wire is neglectable. This simple study reveals the importance of considering strain rate effect in seismic analysis for transmission tower-line system.


2006 ◽  
Vol 532-533 ◽  
pp. 973-976
Author(s):  
Lin Wang ◽  
Tai Chiu Lee ◽  
Luen Chow Chan

In this paper, the effect of strain rate has been considered in the simulation of forming process with a simple form combined into the material law. Quite a few researchers have proposed various hardening laws and strain rate functions to describe the material tensile curve. In this study, the strain rate model Cowper-Symonds is used with anisotropic elasto-plastic material law in the simulation process. The strain path evolution of certain elements, when the strain rate is considered and not, is compared. Two sheet materials, Cold-reduced Carbon Steel (SPCC) JIS G3141 and Aluminum alloy 6112 are used in this study. Two yield criteria, Hill 48 and Hill 90, are applied respectively to improve the accuracy of simulation result. They show different performance when strain rate effect is considered. Strain path of the elements in the fracture risk area of SPCC (JIS G3141) varies much when the strain rate material law is used. There is only little difference of the strain distribution of Al 6112 when the strain rate effect is included and excluded in the material law. The simulation results of material SPCC under two conditions indicate that the strain rate should be considered if the material is the rate-sensitive material, which provides more accurate simulation results.


Sign in / Sign up

Export Citation Format

Share Document