Numerical and Experimental Study of Flow Structure of Low-Aspect-Ratio Wing

2004 ◽  
Vol 41 (5) ◽  
pp. 1196-1201 ◽  
Author(s):  
Tang Jian ◽  
Zhu Ke-Qin
1967 ◽  
Vol 2 (5) ◽  
pp. 74-79 ◽  
Author(s):  
V. I. Alferov ◽  
T. I. Okerblom ◽  
A. I. Sarantsev

Author(s):  
M. A. Arevalo-Campillos ◽  
S. Tuling ◽  
L. Parras ◽  
C. del Pino ◽  
L. Dala

The dynamics of very low aspect ratio wings (or strakes) vortices in slender bodies are complex due to the interaction of the shed vortex sheet and the body vortex. For missiles at supersonic speeds these interactions are not easily predicted using engineering level tools. To shed some new light onto this problem, an experimental study in a water channel for moderate Reynolds number (Re = 1000) was performed for a 19D body and strake configuration with strakes having a span to body diameter ratio of 1.25. Comparisons to numerical simulations in supersonic flow are also performed. Flow visualisation has been carried out to characterize the vortex dynamics at different angles of attack; these being 11°, 16°, 22° and 27°. The comparison between a slender body without strakes and the body-strake configuration has given some key indicators in relation to the vortex position of the core. Furthermore, unsteady wing-body interference has been observed at angles of attack above 20° for both experimental and numerical simulations. Consequently, the average position of the vortex core is located at larger distances from the missile in comparison to the body without strakes. The numerical simulations show good correlation with the experimental tests even though the dynamic convective interactions between the body vortex and strake vortex sheet are not predicted.


Author(s):  
Rodolfo T. Gonçalves ◽  
André L. C. Fujarra

Experiments regarding vortex-induced vibration on floating circular cylinders with low aspect ratio were carried out in a recirculation water channel. The floating circular cylinders were elastic supported by a set of linear springs to provide low structural damping on the system. Eight different aspect ratios were tested, namely L/D = 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5 and 2.0. These aspect ratios were selected to cover the aspect ratio range of the main offshore circular platforms, such as spar and monocolumn. The aims were understanding the VIM of such platforms; due to this, the cylinders were floating, or m* = 1. The range of Reynolds number covered 2,800 < Re < 55,400. The amplitude results showed a decrease in amplitude with decreasing aspect ratio in both directions. The frequency results confirm a different behavior for cylinders with L/D ≤ 0.5; in these cases, the cylinder free-end effects were predominant. The resonant behaviour was no longer observed for L/D ≤ 0.2. The decrease in Strouhal number with decreasing aspect ratio is also verified. All the results presented here complement the work presented previously for stationary circular cylinder with low aspect ratio presented by Gonçalves et al. (2013), Experimental Study on Flow around Circular Cylinders with Low Aspect Ratio, OMAE2013-10454.


Sign in / Sign up

Export Citation Format

Share Document