Surface-Flow Visualization and Pressure-Sensitive Paint Measurements in the Large-Scale Low-Boom Inlet

2012 ◽  
Vol 28 (6) ◽  
pp. 1243-1257 ◽  
Author(s):  
Thomas G. Herges ◽  
J. Craig Dutton ◽  
Gregory S. Elliott
1998 ◽  
Vol 370 ◽  
pp. 347-380 ◽  
Author(s):  
G. J. NATHAN ◽  
S. J. HILL ◽  
R. E. LUXTON

A continuously unstable precessing flow within a short cylindrical chamber following a large sudden expansion is described. The investigation relates to a nozzle designed to produce a jet which achieves large-scale mixing in the downstream field. The inlet flow in the plane of the sudden expansion is well defined and free from asymmetry. Qualitative flow visualization in water and semi-quantitative surface flow visualization in air are reported which identify this precession within the chamber. Quantitative simultaneous measurements from fast-response pressure transducers at four tapping points on the internal walls of the nozzle chamber confirm the presence of the precessing field. The investigation focuses on the flow within the nozzle chamber rather than that in the emerging jet, although the emerging flow is also visualized.Two flow modes are identified: a ‘precessing jet’ mode which is instantaneously highly asymmetric, and a quasi-symmetric ‘axial jet’ mode. The precessing jet mode, on which the investigation concentrates, predominates in the geometric configuration investigated here. A topologically consistent flow field, derived from the visualization and from the fluctuating pressure data, which describes a three-dimensional and time-dependent precessing motion of the jet within the chamber is proposed. The surface flow visualization quantifies the axial distances to lines of positive and negative bifurcation allowing comparison with related flows involving large-scale precession or flapping reported by others. The Strouhal numbers (dimensionless frequencies) of these flows are shown to be two orders of magnitude lower than that measured in the shear layer of the jet entering the chamber. The phenomenon is demonstrated to be unrelated to acoustic coupling.


2007 ◽  
Vol 589 ◽  
pp. 353-374 ◽  
Author(s):  
P. A. GREGORY ◽  
P. N. JOUBERT ◽  
M. S. CHONG

Using the method pioneered by Gurzhienko (1934), the crossflow separation produced by a body of revolution in a steady turn is examined using a stationary deformed body placed in a wind tunnel. The body of revolution was deformed about a radius equal to three times the body's length. Surface pressure and skin-friction measurements revealed regions of separated flow occurring over the rear of the model. Extensive surface flow visualization showed the presence of separated flow bounded by a separation and reattachment line. This region of separated flow began just beyond the midpoint of the length of the body, which was consistent with the skin-friction data. Extensive turbulence measurements were performed at four cross-sections through the wake including two stations located beyond the length of the model. These measurements revealed the location of the off-body vortex, the levels of turbulent kinetic energy within the shear layer producing the off-body vorticity and the large values of 〈uw〉 stress within the wake. Velocity spectra measurements taken at several points in the wake show evidence of the inertial sublayer. Finally, surface flow topologies and outer-flow topologies are suggested based on the results of the surface flow visualization.


Author(s):  
F. Taremi ◽  
S. A. Sjolander ◽  
T. J. Praisner

An experimental investigation of two low-turning (90°) transonic linear turbine cascades was presented in Part I of the paper. Part II examines two high-turning (112°) turbine cascades. The experimental results include total pressure losses, streamwise vorticity and secondary kinetic energy distributions. The measurements were made using a seven-hole pressure probe downstream of the cascades. In addition to the measurements, surface flow visualization was conducted to assist in the interpretation of the flow physics. The turbine cascades in Part II, referred to as SL1F and SL2F, have the same inlet and outlet design flow angles, but different aerodynamic loading levels: SL2F is more highly loaded than SL1F. The surface flow visualization results show evidence of small flow separation on the suction side of both airfoils. At the design conditions (outlet Mach number ≈ 0.8), SL2F exhibits stronger vortical structures and larger secondary velocities than SL1F. The two cascades, however, produce similar row losses based on the measurements at 40% axial chord lengths downstream of the trailing edge. Additional data were collected at off-design outlet Mach numbers of 0.65 and 0.91. As the Mach number is raised, the cascades become more aft-loaded. The absolute blade loadings increase, but the Zweifel coefficients decrease due to higher outlet dynamic pressures. Both profile and secondary losses decrease at higher Mach numbers; the main vortical structures and the corresponding peak losses migrate towards the endwall, and there are reductions in secondary kinetic energy and exit flow angle variations. The streamwise vorticity distributions show smaller peak vorticities associated with the passage and the counter vortices at higher exit Mach numbers. The corner vortex, on the other hand, becomes more intensified, resulting in reduction of flow overturning near the endwall. The results for SL1F and SL2F are compared and contrasted with the results for the lower turning cascades presented in Part I. The possible effects of suction-surface flow separation on profile and secondary losses are discussed in this context. The current research project is part of a larger study concerning the effects of endwall contouring on secondary losses, which will be presented in the near future.


2013 ◽  
Vol 19 (9) ◽  
pp. 1476-1487 ◽  
Author(s):  
Jin Huang ◽  
Zherong Pan ◽  
Guoning Chen ◽  
Wei Chen ◽  
Hujun Bao

Author(s):  
Manuel Wilhelm ◽  
Heinz-Peter Schiffer

Rotor tip film cooling is investigated at the Large Scale Turbine Rig, which is a 1.5-stage axial turbine rig operating at low speeds. Using pressure sensitive paint, the film cooling effectiveness η at a squealer-type blade tip with cylindrical pressure-side film cooling holes is obtained. The effect of turbine inlet swirl on η is examined in comparison to an axial inflow baseline case. Coolant-to-mainstream injection ratios are varied between 0.45% and 1.74% for an engine-realistic coolant-to-mainstream density ratio of 1.5. It is shown that inlet swirl causes a reduction in η for low injection ratios by up to 26%, with the trailing edge being especially susceptible to swirl. For injection ratios greater than 0.93%, however, η is increased by up to 11% for swirling inflow, while for axial inflow a further increase in coolant injection does not transfer into a gain in η .


1990 ◽  
Author(s):  
H. David Joslyn ◽  
Joost J. Brasz ◽  
Robert P. Dring

The ability to acquire blade loadings (surface pressure distributions) and surface flow visualization on an unshrouded centrifugal compressor impeller is demonstrated. Circumferential and streamwise static pressure distributions acquired on the stationary shroud are also presented. Data was acquired in a new facility designed for centrifugal compressor aerodynamic research. Blade loadings calculated with a blade–to–blade potential flow analysis are compared with the measured results. Surface flow visualization reveals some complex aspects of the flow on the surface of the impeller blading and hub. In a companion paper, Dorney and Davis (1990), a state–of–the–art, three–dimensional, time–accurate, Navier Stokes prediction of the flow through the impeller is presented.


Sign in / Sign up

Export Citation Format

Share Document