Measurements of Endwall Flows in Transonic Linear Turbine Cascades: Part II—High Flow Turning

Author(s):  
F. Taremi ◽  
S. A. Sjolander ◽  
T. J. Praisner

An experimental investigation of two low-turning (90°) transonic linear turbine cascades was presented in Part I of the paper. Part II examines two high-turning (112°) turbine cascades. The experimental results include total pressure losses, streamwise vorticity and secondary kinetic energy distributions. The measurements were made using a seven-hole pressure probe downstream of the cascades. In addition to the measurements, surface flow visualization was conducted to assist in the interpretation of the flow physics. The turbine cascades in Part II, referred to as SL1F and SL2F, have the same inlet and outlet design flow angles, but different aerodynamic loading levels: SL2F is more highly loaded than SL1F. The surface flow visualization results show evidence of small flow separation on the suction side of both airfoils. At the design conditions (outlet Mach number ≈ 0.8), SL2F exhibits stronger vortical structures and larger secondary velocities than SL1F. The two cascades, however, produce similar row losses based on the measurements at 40% axial chord lengths downstream of the trailing edge. Additional data were collected at off-design outlet Mach numbers of 0.65 and 0.91. As the Mach number is raised, the cascades become more aft-loaded. The absolute blade loadings increase, but the Zweifel coefficients decrease due to higher outlet dynamic pressures. Both profile and secondary losses decrease at higher Mach numbers; the main vortical structures and the corresponding peak losses migrate towards the endwall, and there are reductions in secondary kinetic energy and exit flow angle variations. The streamwise vorticity distributions show smaller peak vorticities associated with the passage and the counter vortices at higher exit Mach numbers. The corner vortex, on the other hand, becomes more intensified, resulting in reduction of flow overturning near the endwall. The results for SL1F and SL2F are compared and contrasted with the results for the lower turning cascades presented in Part I. The possible effects of suction-surface flow separation on profile and secondary losses are discussed in this context. The current research project is part of a larger study concerning the effects of endwall contouring on secondary losses, which will be presented in the near future.

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Farzad Taremi ◽  
Steen A. Sjolander ◽  
Thomas J. Praisner

An experimental investigation of the endwall flows in two high-turning turbine cascades was presented by Taremi et al. (2010, “Measurements of Endwall Flows in Transonic Linear Turbine Cascades: Part II—High Flow Turning,” ASME Conf. Proc., GT2010-22760, pp. 1343–1356). Endwall contouring was subsequently implemented in these cascades to control the secondary flows and reduce the total pressure losses. The current paper presents experimental results from these cascades to assess the effectiveness of endwall contouring in the transonic flow regime. The results include blade loadings, total pressure losses, streamwise vorticity and secondary kinetic energy distributions. In addition, surface flow visualization results are presented in order to interpret the endwall limiting streamlines within the blade passages. The flat-endwall and contoured-endwall cascades produce very similar midspan loading distributions and profile losses, but exhibit different secondary flows. The endwall surface flow visualization results indicate weaker interaction between the secondary flows and the blade suction surface boundary layers in the contoured cascades. Overall, the implementation of endwall contouring results in smaller and less intense vortical structures, and the reduction of the associated secondary kinetic energy (SKE) and exit flow angle variations. However, the mass-averaged losses at the main measurement plane, located 40% axial chord lengths downstream of the cascade (1.4CX), do not corroborate the numerically predicted improvements for the contoured cascades. This is in part attributed to slower mixing rates of the secondary flows in the compressible flow regime. The mass-averaged results at 2.0CX, on the other hand, show smaller losses for the contoured configurations associated with smaller SKE dissipation downstream of the cascades. Accordingly, the mixed-out row losses also show improvements for the contoured cascades.


1988 ◽  
Vol 110 (1) ◽  
pp. 1-8 ◽  
Author(s):  
D. G. Gregory-Smith ◽  
C. P. Graves ◽  
J. A. Walsh

The growth of losses, secondary kinetic energy, and streamwise vorticity have been studied in a high turning rotor cascade. Negative vorticity associated with the passage vortex agreed well with predictions of classical secondary flow theory in the early part of the blade passage. However, toward the exit, the distortion of the flow by the secondary velocities rendered the predictions inaccurate. Areas of positive vorticity were associated with the feeding of loss into the bulk flow and have been related to separation lines observed by surface flow visualization.


Author(s):  
F. Taremi ◽  
S. A. Sjolander ◽  
T. J. Praisner

An experimental investigation of the endwall flows in two transonic linear turbine cascades was presented at the 2010 ASME Turbo Expo (GT2010–22760). Endwall contouring was subsequently implemented in these cascades to control the secondary flows, and reduce the total pressure losses. The current paper presents experimental results from these cascades to assess the effectiveness of endwall contouring in the transonic flow regime. The experimental results include blade loadings, total pressure losses, streamwise vorticity and secondary kinetic energy distributions. In addition, surface flow visualization results are presented in order to interpret the endwall limiting streamlines within the blade passages. The flat-endwall and contoured-endwall cascades produce very similar midspan loading distributions and profile losses, but exhibit different secondary flows. The endwall surface flow visualization results indicate weaker interaction between the secondary flows and the blade suction surface boundary layers in the contoured cascades. Overall, the implementation of endwall contouring results in smaller and less intense vortical structures, and the reduction of the associated secondary kinetic energy (SKE) and exit flow angle variations. However, the mass-averaged losses at the main measurement plane, located 40% axial chord lengths downstream of the cascade (1.4CX), do not corroborate the numerically predicted improvements for the contoured cascades. This is in part attributed to slower mixing rates of the secondary flows in the compressible flow regime. The mass-averaged results at 2.0CX, on the other hand, show smaller losses for the contoured cascades associated with smaller SKE dissipation downstream of the cascades. Accordingly, the mixed-out row losses also show improvements for the contoured cascades.


2007 ◽  
Vol 589 ◽  
pp. 353-374 ◽  
Author(s):  
P. A. GREGORY ◽  
P. N. JOUBERT ◽  
M. S. CHONG

Using the method pioneered by Gurzhienko (1934), the crossflow separation produced by a body of revolution in a steady turn is examined using a stationary deformed body placed in a wind tunnel. The body of revolution was deformed about a radius equal to three times the body's length. Surface pressure and skin-friction measurements revealed regions of separated flow occurring over the rear of the model. Extensive surface flow visualization showed the presence of separated flow bounded by a separation and reattachment line. This region of separated flow began just beyond the midpoint of the length of the body, which was consistent with the skin-friction data. Extensive turbulence measurements were performed at four cross-sections through the wake including two stations located beyond the length of the model. These measurements revealed the location of the off-body vortex, the levels of turbulent kinetic energy within the shear layer producing the off-body vorticity and the large values of 〈uw〉 stress within the wake. Velocity spectra measurements taken at several points in the wake show evidence of the inertial sublayer. Finally, surface flow topologies and outer-flow topologies are suggested based on the results of the surface flow visualization.


2013 ◽  
Vol 19 (9) ◽  
pp. 1476-1487 ◽  
Author(s):  
Jin Huang ◽  
Zherong Pan ◽  
Guoning Chen ◽  
Wei Chen ◽  
Hujun Bao

Author(s):  
Y. Jiang ◽  
N. Gurram ◽  
E. Romero ◽  
P. T. Ireland ◽  
L. di Mare

Slot film cooling is a popular choice for trailing edge cooling in high pressure (HP) turbine blades because it can provide more uniform film coverage compared to discrete film cooling holes. The slot geometry consists of a cut back in the blade pressure side connected through rectangular openings to the internal coolant feed passage. The numerical simulation of this kind of film cooling flows is challenging due to the presence of flow interactions like step flow separation, coolant-mainstream mixing and heat transfer. The geometry under consideration is a cutback surface at the trailing edge of a constant cross-section aerofoil. The cutback surface is divided into three sections separated by narrow lands. The experiments are conducted in a high speed cascade in Oxford Osney Thermo-Fluids Laboratory at Reynolds and Mach number distributions representative of engine conditions. The capability of CFD methods to capture these flow phenomena is investigated in this paper. The isentropic Mach number and film effectiveness are compared between CFD and pressure sensitive paint (PSP) data. Compared to steady k–ω SST method, Scale Adaptive Simulation (SAS) can agree better with the measurement. Furthermore, the profiles of kinetic energy, production and shear stress obtained by the steady and SAS methods are compared to identify the main source of inaccuracy in RANS simulations. The SAS method is better to capture the unsteady coolant-hot gas mixing and vortex shedding at the slot lip. The cross flow is found to affect the film significantly as it triggers flow separation near the lands and reduces the effectiveness. The film is non-symmetric with respect to the half-span plane and different flow features are present in each slot. The effect of mass flow ratio (MFR) on flow pattern and coolant distribution is also studied. The profiles of velocity, kinetic energy and production of turbulent energy are compared among the slots in detail. The MFR not only affects the magnitude but also changes the sign of production.


Author(s):  
Daiki Terakado ◽  
Taku Nonomura ◽  
Makoto Sato ◽  
Kozo Fujii

We investigate the relation between vortical structures and sound source in isotropic compressible turbulence by direct numerical simulations with various turbulent Mach numbers. The sound source is obtained numerically from the Lighthill equation. As a first step, we study the sound source from the Reynolds stress, which is the dominant source in flows at low Mach numbers. We investigate, especially, sound source structures around the “coherent fine scale eddies” [1–4] to lead a universal conclusion of sound generation mechanism from the fine scale structures in supersonic flows. We find that the sound source structures around the coherent fine scale eddies show some distorted structures only in high Mach number flows because shocklets appear around the fine scale eddies in those flows. This change in sound source structures around the coherent fine scale eddies does not appear in low and moderate Mach number cases.


Sign in / Sign up

Export Citation Format

Share Document