Impact Angle Constrained Integrated Guidance and Control for Maneuvering Target Interception

2017 ◽  
Vol 40 (10) ◽  
pp. 2653-2661 ◽  
Author(s):  
Shaoming He ◽  
Tao Song ◽  
Defu Lin
Author(s):  
Guanjie Hu ◽  
Jianguo Guo ◽  
Jun Zhou

An integrated guidance and control method is investigated for interceptors with impact angle constraint against a high-speed maneuvering target. Firstly, a new control-oriented model with impact angle constraint of the integrated guidance and control system is built in the pitch plane by combining the engagement kinematics and missile dynamics model between the interceptor and target. Secondly, the flight path angle of the target is estimated by extended Kalman filter in order to transform the terminal impact angle constraint into the terminal line-of-sight angle constraint. Thirdly, a nonlinear adaptive sliding mode control law of the integrated guidance and control system is designed in order to directly obtain the rudder deflection command, which eliminates time delay caused by the traditional backstepping control method. Then the Lyapunov stability theory is used to prove the stability of the whole closed-loop integrated guidance and control system. Finally, the simulation results confirm that the integrated guidance and control method proposed in this paper can effectively improve the interception performance of the interceptor to a high-speed maneuvering target.


Author(s):  
Xiang Liu ◽  
Xiaogeng Liang

To solve the multi-interceptor coordination problem and to intercept the target with impact angle constraint, a novel distributed cooperative control algorithm with impact angle constraint based on integrated guidance and control is proposed. First, the mathematic model of integrated guidance and control is established by combining the interceptor-target relative motion model with the dynamic equation of the interceptor on pitch plane. The time varying gain extended state observer is developed to estimate and compensate the unknown disturbance. Based on the estimated value and fast nonsingular dynamic surface sliding control method, the IGC algorithm of leader is given; Then, based on distributed cooperative "leader-follower" model, the cooperative control strategy of multi-interceptor is designed, and gives out speeds in two directions on pitch plane, which are transformed to the command of total velocity and trajectory angle based on kinematic relations. Finally, to control the follower, the time varying gain extended state observer and the dynamic surface sliding control method are adopted. The simulation results demonstrate the effectiveness of the distributed cooperative control algorithm.


2019 ◽  
Vol 123 (1267) ◽  
pp. 1437-1453
Author(s):  
X. L. Ai ◽  
Y. C. Shen ◽  
L. L. Wang

ABSTRACTThis paper considers the integrated guidance and control (IGC) problem for impact angle constrained interception against manoeuvring targets with actuator saturation constraint. Based on the backstepping technique, an adaptive IGC law is presented to address this problem, where a fixed-time differentiator is proposed to estimate the derivatives of virtual control inputs to avoid the inherent problem of “explosion of complexity” suffered by the typical backstepping. Furthermore, an auxiliary first-order filter is introduced into the IGC law to cope with the actuator saturation constraint. The stability of the closed-loop system is strictly proved. Finally, the superiority of the proposed IGC law is verified by comparison simulations.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shengjiang Yang ◽  
Jianguo Guo ◽  
Jun Zhou

A new integrated guidance and control (IGC) law is investigated for a homing missile with an impact angle against a ground target. Firstly, a control-oriented model with impact angle error of the IGC system in the pitch plane is formulated by linear coordinate transformation according to the motion kinematics and missile dynamics model. Secondly, an IGC law is proposed to satisfy the impact angle constraint and to improve the rapidity of the guidance and control system by combining the sliding mode control method and nonlinear extended disturbance observer technique. Thirdly, stability of the closed-loop guidance and control system is proven based on the Lyapunov stability theory, and the relationship between the accuracy of the impact angle and the estimate errors of nonlinear disturbances is derived from stability of the sliding mode. Finally, simulation results confirm that the proposed IGC law can improve the performance of the missile guidance and control system against a ground target.


Sign in / Sign up

Export Citation Format

Share Document