Characteristics of Leeward Shear Layer Structure of Hollow-Cone Spray in Gaseous Crossflow

AIAA Journal ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 405-409
Author(s):  
Haibin Zhang ◽  
Shilin Gao ◽  
Bofeng Bai ◽  
Yechun Wang
Author(s):  
B. Chehroudi ◽  
M. Ghaffarpour

A pressure-swirl fuel nozzle generating a hollow-cone spray with nominal cone angle of 30 degrees is used in a swirl-stabilized combustor. The combustor is circular in cross section with swirl plate and fuel nozzle axes aligned and coinciding with the axis of the chamber. Kerosene is injected upward inside the chamber from the fuel nozzle. Separate swirl and dilution air flows are uniformly distributed into the chamber that pass through the honey comb flow straighteners and screens. Calculated swirl number of 1.5 is generated with the design swirl plate exit air velocity of 30 degrees with respect to the chamber axis. Effects of swirl and dilution air flow rates on the shape and stability of the flame are investigated. Stable and classical liquid fuel sheet disintegration zone exists close to the nozzle with no visible light followed by a luminous blue region and a mixed blue/yellow region that subsequently turns into yellow for most of the part in the flame. A Phase Doppler Particle Analyzer (PDPA) is used to measure drop size, mean and rms axial velocity for two cases of with and without combustion at six different axial locations from the nozzle. For the no-combustion case all air and fuel flow rates were kept at the same values as the combusting spray condition. Results for mean axial drop velocity profiles indicate widening of the spray due to combustion while the magnitudes of the peak velocities are slightly increased. No measurements inside the hollow-cone spray are possible due to burning of fuel droplets. Drop turbulence decreases due to combination of increase in gas kinematic viscosity and elimination of small drops at high temperatures. Sauter Mean Diameter (SMD) radial profiles at all axial locations increase with combustion due to preferential burning of small drops.


2017 ◽  
Author(s):  
Carlo Beatrice ◽  
Giacomo Belgiorno ◽  
Gabriele Di Blasio ◽  
Ezio Mancaruso ◽  
Luigi Sequino ◽  
...  

1988 ◽  
Vol 192 ◽  
pp. 577-595 ◽  
Author(s):  
I. P. Castro ◽  
A. Haque

Detailed measurements throughout the separated region behind a flat plate placed normal to a turbulent stream are reported. A long, central, downstream splitter plate prevented vortex shedding and led to a relatively extensive reversed flow region. Mean flow and turbulence data are compared with results obtained in the (nominal) absence of free-stream turbulence, and attention is concentrated on the changes in the shear-layer structure resulting from the different nature of the upstream flow.Many aspects of the results confirm those obtained recently by other workers. Free-stream turbulence enhances shear-layer entrainment rates, reduces the distance to reattachment and modifies the relatively low-frequency ‘flapping’ motion of the shear layer. In addition, however, extensive use of pulsed wire anemometry has allowed detailed measurements of the turbulence structure throughout the flow and it is shown that this is also modified significantly by the stream turbulence.


2011 ◽  
Author(s):  
Lars Schmidt ◽  
Jason King ◽  
John Stokes ◽  
James Mullineux ◽  
Calvin R.Ramasamy ◽  
...  

1972 ◽  
Vol 53 (4) ◽  
pp. 647-655 ◽  
Author(s):  
M. R. Foster

The flow induced by the differential rotation of a cylindrical depression of radius a in one of two parallel rigid planes rapidly rotating about their common normal at speed Q is studied. A Taylor column bounded by the usual Stewartson layers arises, but the shear-layer structure is rather different from any previously studied. The Ei-layers (E = v/ωa2) smooth the discontinuity in the geostrophic flow, but the way in which this is accomplished is related to the possible singu-larities of the E1/3-layer solutions. The fact that the 1/4-layer is partially free and partially attached to a vertical boundary accounts for the new joining conditions for the 1/4-layer. The drag on a right circular cylindrical bump in uniform flow is given in addition to some general comments on the applicability of these joining conditions to the motion of an axisymmetric object of quite general shape.


2019 ◽  
Vol 866 ◽  
pp. 216-238 ◽  
Author(s):  
G. E. Elsinga ◽  
C. B. da Silva

The average patterns of the velocity and scalar fields near turbulent/non-turbulent interfaces (TNTI), obtained from direct numerical simulations (DNS) of planar turbulent jets and shear free turbulence, are assessed in the strain eigenframe. These flow patterns help to clarify many aspects of the flow dynamics, including a passive scalar, near a TNTI layer, that are otherwise not easily and clearly assessed. The averaged flow field near the TNTI layer exhibits a saddle-node flow topology associated with a vortex in one half of the interface, while the other half of the interface consists of a shear layer. This observed flow pattern is thus very different from the shear-layer structure consisting of two aligned vortical motions bounded by two large-scale regions of uniform flow, that typically characterizes the average strain field in the fully developed turbulent regions. Moreover, strain dominates over vorticity near the TNTI layer, in contrast to internal turbulence. Consequently, the most compressive principal straining direction is perpendicular to the TNTI layer, and the characteristic 45-degree angle displayed in internal shear layers is not observed at the TNTI layer. The particular flow pattern observed near the TNTI layer has important consequences for the dynamics of a passive scalar field, and explains why regions of particularly high scalar gradient (magnitude) are typically found at TNTIs separating fluid with different levels of scalar concentration. Finally, it is demonstrated that, within the fully developed internal turbulent region, the scalar gradient exhibits an angle with the most compressive straining direction with a peak probability at around 20$^{\text{o}}$. The scalar gradient and the most compressive strain are not preferentially aligned, as has been considered for many years. The misconception originated from an ambiguous definition of the positive directions of the strain eigenvectors.


AIAA Journal ◽  
2013 ◽  
Vol 51 (3) ◽  
pp. 615-622 ◽  
Author(s):  
Haibin Zhang ◽  
Bofeng Bai ◽  
Li Liu ◽  
Huijuan Sun ◽  
Junjie Yan

Sign in / Sign up

Export Citation Format

Share Document