A technique for estimating axial flow compressor potential peak efficiency and related performance.

1967 ◽  
Vol 4 (2) ◽  
pp. 133-136 ◽  
Author(s):  
DONALD LOSEY ◽  
WIDEN TABAKOFF
Author(s):  
N. Suryavamshi ◽  
B. Lakshminarayana ◽  
J. Prato

The results from the area traverse measurements of the unsteady total temperature using a high response aspirating probe downstream of the second stator of a three stage axial flow compressor are presented. The measurements were conducted at the peak efficiency operating point. The unsteady total temperature data is resolved into deterministic and unresolved components. Hub and casing regions have high levels of unsteadiness and consequently high levels of mixing. These regions have significant levels of shaft resolved and unresolved unsteadiness. Comparisons are made between the total temperature and the total pressure data to examine the rotor 2 wake characteristics and the temporal variation of the stator exit flow. Isentropic efficiency calculations at the midpitch location show that there is about a 4% change in the algebraically averaged efficiency across the blades of the second rotor and if all the rotor 2 blades were behaving as a “best” blade, the improvement in efficiency would be about 1.3%. An attempt is made to create a composite flow field picture by correlating the unsteady velocity data with temperature and pressure data.


Author(s):  
Maoyi Li ◽  
Wei Yuan ◽  
Xizhen Song ◽  
Yajun Lu ◽  
Zhiping Li ◽  
...  

The traditional annulus casing treatment often pays the price of lowered efficiency for improving the stall margin of a compressor under inlet distortion. In view of the unsymmetry of the inlet flow-field of compressors, partial casing treatment was used to control the flow in a transonic axial-flow compressor with arc-skewed-slots deployed at different circumferential positions under inlet distortion. The experimental results indicate that when the partial casing treatment is arranged on the undistorted and distorted sectors, the stall margin is enhanced by 8.02%, with the relative peak efficiency improved simultaneously by 2.143%, compared with the case of solid casing at 98% rotating speed. By contrast, the traditional casing treatment increases the stall-margin by 23.13%, but decreases the relative peak efficiency by 0.752%. By analyzing dynamic and static experimental data, the mechanism underlying the partial casing treatment was also studied in detail here. The disturbances of inlet flow were restrained by annulus casing treatment, nevertheless the total pressure ratio was decreased obviously in the distorted sector. As a result, the stall-margin is improved, but the relative peak efficiency is decreased too. When the partial casing treatment was arranged on the undistortded and distorted sectors, the stall disturbances was thereby restrained. So the stall margin was enhanced. In addition, the total pressure ratio was improved by the partial casing treatment in the distorted and transition sectors, and thus the relative peak efficiency was also increased markedly.


1997 ◽  
Vol 119 (4) ◽  
pp. 985-994 ◽  
Author(s):  
N. Suryavamshi ◽  
B. Lakshminarayana ◽  
J. Prato ◽  
J. R. Fagan

The results from measurements of the unsteady total pressure field downstream of an embedded stage of a three stage axial flow compressor are presented in this paper. The measurements include area traverses of a high response kulite total pressure probe and a pneumatic five hole probe downstream of stator 2 at the peak efficiency operating point for the compressor. These data indicate that both the shaft-resolved and unresolved fluctuations contribute to the unsteadiness of the total pressure field in multistage compressors. Specifically, regions associated with high levels of unsteadiness and, consequently, high levels of mixing including both the hub and casing end walls and the airfoil wakes have significant levels of shaft resolved and unresolved unsteadiness. Temporal variations of stator exit flow are influenced by both shaft resolved and unresolved unsteadiness distributions. The limitations of state-of-the-art instrumentation for making measurements in moderate and high speed turbomachinery and the decomposition used to analyze these data are also discussed.


1998 ◽  
Vol 120 (1) ◽  
pp. 156-169 ◽  
Author(s):  
N. Suryavamshi ◽  
B. Lakshminarayana ◽  
J. Prato

The results from the area traverse measurements of the unsteady total temperature using a high-response aspirating probe downstream of the second stator of a three-stage axial flow compressor are presented. The measurements were conducted at the peak efficiency operating point. The unsteady total temperature data are resolved into deterministic and unresolved components. Hub and casing regions have high levels of unsteadiness and consequently high levels of mixing. These regions have significant levels of shaft resolved and unresolved unsteadiness. Comparisons are made between the total temperature and the total pressure data to examine the rotor 2 wake characteristics and the temporal variation of the stator exit flow. Isentropic efficiency calculations at the midpitch location show that there is about a 4 percent change in the algebraically averaged efficiency across the blades of the second rotor and if all the rotor 2 blades were behaving as a “best” blade, the improvement in efficiency would be about 1.3 percent. An attempt is made to create a composite flow field picture by correlating the unsteady velocity data with temperature and pressure data.


Author(s):  
M. H. Noorsalehi ◽  
M. Nili-Ahamadabadi ◽  
E. Shirani ◽  
M. Safari

In this study, a new inverse design method called Elastic Surface Algorithm (ESA) is developed and enhanced for axial-flow compressor blade design in subsonic and transonic flow regimes with separation. ESA is a physically based iterative inverse design method that uses a 2D flow analysis code to estimate the pressure distribution on the solid structure, i.e. airfoil, and a 2D solid beam finite element code to calculate the deflections due to the difference between the calculated and target pressure distributions. In order to enhance the ESA, the wall shear stress distribution, besides pressure distribution, is applied to deflect the shape of the airfoil. The enhanced method is validated through the inverse design of the rotor blade of the first stage of an axial-flow compressor in transonic viscous flow regime. In addition, some design examples are presented to prove the effectiveness and robustness of the method. The results of this study show that the enhanced Elastic Surface Algorithm is an effective inverse design method in flow regimes with separation and normal shock.


Author(s):  
Wu Dong-run ◽  
Teng Jin-fang ◽  
Qiang Xiao-qing ◽  
Feng Jin-zhang

This paper applies a new analytical/empirical method to formulate the off-design deviation angle correlation of axial flow compressor blade elements. An implicit function of deviation angle is used to map off-design deviation curves into linear correlations (minimum linear correlation coefficient R = 0.959 in this paper). Solution of the coefficients in the correlation is given through the study of classical theories and statistical analysis of the experimental data. The off-design deviation angle can be calculated numerically. The approach requires only knowledge of the blade element geometry. The comparison among 2 classical correlations and the new correlation proposed in this paper shows the new correlation has minimum error over the entire range of incidence angle while classical correlations show high reliability only in a limited range. Experimental data in this paper is collected from NASA’s open technical reports. Rotors and stators are studied together. Considering there is significant deviation angle variation along spanwise direction, only data at 50% span is studied, if possible. The error among experimental data, statistical regressions of the experimental data, and numerical results based on the new correlation is discussed. It has to be noted that the influence of the flow condition other than incidence angle is only being discussed but with less break through.


Sign in / Sign up

Export Citation Format

Share Document