New chill-block melt spinning relations to predict ribbon thickness

10.2514/3.826 ◽  
1996 ◽  
Vol 10 (3) ◽  
pp. 545-547
Author(s):  
David J. Kukulka ◽  
Anant Poopisut ◽  
Joseph C. Mollendorf
2020 ◽  
Vol 150 ◽  
pp. 106221
Author(s):  
Marcelo Barone ◽  
Francisco Barceló ◽  
Marcelo Pagnola ◽  
Axel Larreteguy ◽  
Andrés G. Marrugo ◽  
...  

2015 ◽  
Vol 11 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Marcelo R. Pagnola ◽  
Marcelo Barone ◽  
Mariano Malmoria ◽  
Hugo Sirkin

Purpose – The purpose of this paper is to present an analysis over own and other authors data related to the process of Chill Block Melt Spinning (CBMS) and propose a model of analysis for interpreting. Design/methodology/approach – The methodology used in this work is to present the data analyzed by other authors, organize own data similarly to establish comparison, and established models and propose a possible physical processes interpretation. Findings – Similarity between own experimental data. with others data reported by other authors, both z/w ratio and the thicknesses of the films produced has been found. This allows us to establish an exponential decay of the parameters studied and possibly link it the Newtonian cooling to which the samples are subjected in its production. Research limitations/implications – This work is the first model set up to predict dimensions in design process by CBMS as a function of parameters of the ribbon production process. Practical implications – The prediction of the product dimensions, with adjusting the initial parameters, allows to improve the process of ribbon production, this saves tuning time of the machine and provides certainty in the molten material ejection. Social implications – The efficient production of magnetic materials lets save efforts in the raw material process preparing in magnetic cores for the energy sector. This, improves production besides benefit society by the final product and the energy savings. Originality/value – The value of this paper is to propose a model of analysis that allows standardize production parameters, and could even allow the use of these models in computer programs, process simulators in a more effective manner.


2018 ◽  
Vol 1 (1) ◽  
pp. 279-285 ◽  
Author(s):  
Sowjanya Madireddi

Planar flow melt spinning process is widely used to manufacture amorphous ribbons for transformer core applications. The position of the crucible above cooling wheel for melt ejection in the realistic production conditions is crucial to producing the higher quality product. The quality of the product depends on the thickness and defect-free state of the ribbon. Puddle formation plays a significant role in the quality of the ribbon. As the experimental investigation is expensive and time consuming a numerical model is used to investigate the effect of clockwise and counter-clockwise inclination of the crucible on puddle formation and ribbon thickness. The thickness increases by 62.8 % and 111.5% with an augment in inclination angle from 0o to 5.4o in counter-clockwise and clockwise directions respectively. Limiting angle of inclination to avoid non-contact zone or cavity in the puddle at the nozzle wall is around 2o to 3o to obtain a higher quality ribbon. This limit can increase up to 3o to 4o for higher wheel speeds. The ideal position of the crucible is perpendicular to the wheel surface. Otherwise, the limiting angle of inclination to produce higher quality ribbon is, counter-clockwise with an optimum inclination of not more than 2 degrees.


1983 ◽  
Vol 28 ◽  
Author(s):  
S. C. Huang ◽  
R. P. Laforce

ABSTRACTThe correlation between ribbon thickness and the length of the melt puddle residing on the surface of a melt-spinning wheel was established for a Ni-base superalloy. Since the melt puddle length defines the solidification time in which a ribbon with a certain thickness is formed, the above correlation allowed a direct derivation of the propagation velocity of the solid-liquid interface. The solidification rate V (mm/s) so obttined as a function of ribbon thickness S (mm) is V = 3.54S−1. Further, the above solidification correlation was analyzed using heat transfer considerations to yield information about the ribbon-wheel interfacial thermal conductance, the solid-liquid interfacial temperature, and the local cooling rate through the ribbon thickness. These thermal results are compared to those deduced from the secondary dendrite arm spacing measurements. Finally, there is a discussion on the ribbon microstructure based on our rapid solidification kinetic result.


1987 ◽  
Vol 22 (3) ◽  
pp. 798-802 ◽  
Author(s):  
Kevin J. Hemker ◽  
Thomas K. Glasgow

Sign in / Sign up

Export Citation Format

Share Document