Length Scales in Laminar and Turbulent Flames

2003 ◽  
Vol 125 (6) ◽  
pp. 1065-1073 ◽  
Author(s):  
Yuan Zheng ◽  
R. S. Barlow ◽  
Jay P. Gore

Instantaneous spectral radiation intensities of three standard turbulent jet flames were measured and simulated in this study. In the simulation, a recently developed technique was adapted to reconstruct the local integral time and length scales in the flames. The simulated radiation properties, including mean, root mean square, probability density function, power spectral density and autocorrelation coefficient, were generally within 10% of the measurements. The macro time and length scales were found to increase with increasing distance from the axis and the radial averages of these scales were found to increase with down stream distance but decrease with Reynolds number.


2012 ◽  
Vol 40 (2) ◽  
pp. 124-150
Author(s):  
Klaus Wiese ◽  
Thiemo M. Kessel ◽  
Reinhard Mundl ◽  
Burkhard Wies

ABSTRACT The presented investigation is motivated by the need for performance improvement in winter tires, based on the idea of innovative “functional” surfaces. Current tread design features focus on macroscopic length scales. The potential of microscopic surface effects for friction on wintery roads has not been considered extensively yet. We limit our considerations to length scales for which rubber is rough, in contrast to a perfectly smooth ice surface. Therefore we assume that the only source of frictional forces is the viscosity of a sheared intermediate thin liquid layer of melted ice. Rubber hysteresis and adhesion effects are considered to be negligible. The height of the liquid layer is driven by an equilibrium between the heat built up by viscous friction, energy consumption for phase transition between ice and water, and heat flow into the cold underlying ice. In addition, the microscopic “squeeze-out” phenomena of melted water resulting from rubber asperities are also taken into consideration. The size and microscopic real contact area of these asperities are derived from roughness parameters of the free rubber surface using Greenwood-Williamson contact theory and compared with the measured real contact area. The derived one-dimensional differential equation for the height of an averaged liquid layer is solved for stationary sliding by a piecewise analytical approximation. The frictional shear forces are deduced and integrated over the whole macroscopic contact area to result in a global coefficient of friction. The boundary condition at the leading edge of the contact area is prescribed by the height of a “quasi-liquid layer,” which already exists on the “free” ice surface. It turns out that this approach meets the measured coefficient of friction in the laboratory. More precisely, the calculated dependencies of the friction coefficient on ice temperature, sliding speed, and contact pressure are confirmed by measurements of a simple rubber block sample on artificial ice in the laboratory.


Impact ◽  
2018 ◽  
Vol 2018 (1) ◽  
pp. 48-50
Author(s):  
Toralf Scharf ◽  
Paul Urbach ◽  
Carsten Rockstuhl ◽  
Frank Setzpfand

2020 ◽  
Vol 22 (36) ◽  
pp. 20914-20921 ◽  
Author(s):  
Rajmohan Muthaiah ◽  
Jivtesh Garg

We report novel pathways to significantly enhance the thermal conductivity at nanometer length scales in boron phosphide through biaxial strain.


Author(s):  
Mathaeus Tschaikowsky ◽  
Tanja Neumann ◽  
Sofia Brander ◽  
Heiko Haschke ◽  
Bernd Rolauffs ◽  
...  

The Analyst ◽  
2021 ◽  
Vol 146 (1) ◽  
pp. 69-74
Author(s):  
Elizabeth Kautz ◽  
John Cliff ◽  
Timothy Lach ◽  
Dallas Reilly ◽  
Arun Devaraj

235U enrichment in a metallic nuclear fuel was measured via NanoSIMS and APT, allowing for a direct comparison of enrichment across length scales and resolutions.


Sign in / Sign up

Export Citation Format

Share Document