An uncoupled viscoplastic constitutive model for metals at elevated temperature

Author(s):  
W. HAISLER ◽  
J. CRONENWORTH
Author(s):  
Heramb P. Mahajan ◽  
Tasnim Hassan

Abstract Current ASME Section III, Division 5 code provides elastic, simplified inelastic and inelastic analysis options for designing nuclear power plant components for elevated temperature service. These analyses methods may fail to capture the complex creep-fatigue response and damage accumulation in materials at elevated temperatures. Hence, for analysis and design of the nuclear power plant components at elevated temperature, a full inelastic analysis that can simulate creep-fatigue responses may be needed. Existing ASME code neither provides guidelines for using full inelastic analysis nor recommends the type of constitutive model to be used. Hence, a unified rate-dependent constitutive model incorporating a damage parameter will be developed, and its parameters for base metal will be determined. In addition, a full inelastic analysis methodology using this model to analyze the creep-fatigue performance of components for nuclear power applications will be developed. Base metal 800H (BM800H) data are collected from literature to determine constitutive material model parameters. The parameter determination methodology for a constitutive model is discussed. The optimized parameter set for BM 800H at different temperatures will be presented in the paper. Recommendations are provided on the constitutive model selection and its parameter determination techniques. In the future, this work will be continued for diffusion bonded Alloy 800H (DB800H) material, and obtained parameters will be compared.


Author(s):  
Tianhao Jiang ◽  
Linfa Peng ◽  
Peiyun Yi ◽  
Xinmin Lai

Both electrically assisted tension (EAT) and thermally assisted tension (TAT) tests were performed on SS304 and pure copper to decouple the influence of elevated temperature from electric current on flow stress and ductility. It is found that the reduction on flow stress and ductility of SS304 are more dependent on the elevated temperature than electric current, but electric current has a stronger effect by 10% on reducing flow stress and ductility of pure copper than the elevated temperature does. As the flow stress and ductility of two metals are related to the dislocation evolution, a constitutive model considering both storage and annihilation process of dislocation was established to describe the effect of electric current and temperature on dislocation movement. It is found that electric current accelerated the annihilation process of dislocation in pure copper up to 20% in EAT compared with that in TAT, but such phenomenon was rarely observed in SS304. Furthermore, attempts have also been made to distinguish the influence of elevated temperature with that of electric current on microstructure evolution and it is also found that the formation of [111] crystals in pure copper is nearly 10% less in EAT than that in TAT.


2013 ◽  
Vol 580 ◽  
pp. 385-390 ◽  
Author(s):  
Xiangyu Wang ◽  
Chuanzhen Huang ◽  
Bin Zou ◽  
Hanlian Liu ◽  
Hongtao Zhu ◽  
...  

2014 ◽  
Vol 624 ◽  
pp. 71-76
Author(s):  
Guang Lu ◽  
Zhi Min Zhang ◽  
Yong Xue ◽  
Bao Cheng Li

Quantities Mg-12Gd-5Y-3Zn-0.6Zr magnesium alloy billets were compressed with true strain 0.7 on hot process simulator at 350,400,450,480°C under strain rates of 0.001, 0.01, 0.1 and 0.5s-1. A constitutive model with a few parameters is used to characterize the dynamic recrystallization strain softening of Mg-12Gd-5Y-3Zn-0.6Zr alloy, which comprehensively reflect the effects of the deformation temperature, strain and strain rate on flow stress.


Author(s):  
Ali P. Gordon ◽  
Firat Irmak ◽  
Thomas Bouchenot ◽  
Bassem Felemban

Despite the significant progress in the development of modern alloys, low alloy steels continue to be the materials of choice for large structural components at elevated temperature for extended periods of time. The resistance of these alloys to deformation and damage under creep and/or fatigue at elevated temperature make them suitable for components expected to endure decades of service. The material 2.25Cr-1Mo is commonly applied in boilers, heat exchanger tubes, and throttle valve bodies in both turbomachinery and pressure-vessel/piping applications alike. It has an excellent balance of ductility, corrosion resistance, and creep strength under moderate temperatures (i.e., up to 650°C). In the present work, a life prediction approach is developed for situations where the material is subjected conditions where creep and fatigue are prevalent. Parameters for the approach are based on regression fits in comparison with a broad collection experimental data. The data are comprised of low cycle fatigue (LCF) and creep fatigue (CF) experiments. The form of the life prediction model follows the cumulative damage approach where dominant damage maps can be used to identify primary microstructural mechanism associated with failure. Life calculations are facilitated by the usage of a non-interacting creep-plasticity constitutive model capable of representing not only the temperature- and rate-dependence, but also the history-dependence of the material. For the inelastic response, both the Garofalo and Chaboche models for creep and plasticity are employed, respectively.


Sign in / Sign up

Export Citation Format

Share Document