Dustbraking - A useful technique for descent propulsion and soft landing on the lunar surface

1990 ◽  
Author(s):  
R. WALDRON
Keyword(s):  
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
SongTao Han ◽  
ZhongKai Zhang ◽  
Jing Sun ◽  
JianFeng Cao ◽  
Lue Chen ◽  
...  

China Chang’E-3 performed soft landing at the plains of Sinus Iridum on lunar surface on December 14th 2013 successfully; it opened a new window for observing lunar surface with radiometric tracking which many lunar scientific researchers always pursue for. Since July 2014, OCEL (Observing Chang’E-3 Lander with VLBI) project has been conducted jointly by IVS (International VLBI Service of Geodesy and Astrometry) and BACC (Beijing Aerospace Control Center), a global IVS R&D network augmented with two China Deep Space Stations configured for OCEL. This paper presents the current status and preliminary result of the OCEL and mainly focuses on determination of the lander position, which is about 7 meter in height and 14 meter in plane of lunar surface with respect to LRO (Lunar Reconnaissance Orbiter). Based on accuracy analysis, further optimized OCEL sessions will make use of this target-of-opportunity, the Chang’E-3 lunar lander, as long as it is working. With higher accurate radiometric observables, more prospective contribution to earth and lunar science is expected by combining with LLR.


Author(s):  
Ke Yin ◽  
Qiao Sun ◽  
Feng Gao ◽  
Songlin Zhou

The autonomous robots consisting of an immovable lander and a rover are widely deployed to explore extraterrestrial planets. Two main drawbacks limit the development of this cooperative work mode: (1) it cannot perform soft-landing missions repeatedly on the planet, owing to the damage of buffer structure during soft-landing. (2) the rover’s detection area is restricted to the vicinity of the immovable lander. To overcome these problems, we have designed an innovative six-legged mobile lander with repetitive landing capacity, called “HexaMRL”, which integrates the functions of a lander and a rover including folding, deploying, repetitive landing, and walking. This novel robot’s legs adopted hybrid mechanism with active and passive compliance. Therefore, it remains to be a great challenge to analyze the robot soft-landing capacity which is determined by the parameters such as spring stiffness coefficient, damper damping coefficient, and initial tiptoe position. In order to solve the problem, the dynamic modeling and assessment criteria were established. The soft-landing process was analyzed through three numerical simulations using three sets of representative parameters based on dynamic model and the set of best effective parameters was chosen to apply in soft-landing experiment on a 5-DOF lunar gravity testing platform (5-DOF LGTP). The experiments were further verified that the selected parameters met the requirement of soft landing on the lunar surface. The HexaMRL provides novel insight for the next generation equipment for lunar exploration, which may be an efficient solution to the extraterrestrial planet exploration.


Author(s):  
J. Wang ◽  
J. Li ◽  
S. Wang ◽  
T. Yu ◽  
Z. Rong ◽  
...  

Abstract. On January 3, 2019, the Chang'e-4 (CE-4) probe successfully landed in the Von Kármán crater inside the South Pole-Aitken (SPA) basin. With the support of a relay communication satellite "Queqiao" launched in 2018 and located at the Earth-Moon L2 liberation point, the lander and the Yutu-2 rover carried out in-situ exploration and patrol surveys, respectively, and were able to make a series of important scientific discoveries. Owing to the complexity and unpredictability of the lunar surface, teleoperation has become the most important control method for the operation of the rover. Computer vision is an important technology to support the teleoperation of the rover. During the powered descent stage and lunar surface exploration, teleoperation based on computer vision can effectively overcome many technical challenges, such as fast positioning of the landing point, high-resolution seamless mapping of the landing site, localization of the rover in the complex environment on the lunar surface, terrain reconstruction, and path planning. All these processes helped achieve the first soft landing, roving, and in-situ exploration on the lunar farside. This paper presents a high-precision positioning technology and positioning results of the landing point based on multi-source data, including orbital images and CE-4 descent images. The method and its results have been successfully applied in an actual engineering mission for the first time in China, providing important support for the topographical analysis of the landing site and mission planning for subsequent teleoperations. After landing, a 0.03 m resolution DOM was generated using the descent images and was used as one of the base maps for the overall rover path planning. Before each movement, the Yutu-2 rover controlled its hazard avoidance cameras (Hazcam), navigation cameras (Navcam), and panoramic cameras (Pancam) to capture stereo images of the lunar surface at different angles. Local digital elevation models (DEMs) with a 0.02 m resolution were routinely produced at each waypoint using the Navcam and Hazcam images. These DEMs were then used to design an obstacle recognition method and establish a model for calculating the slope, aspect, roughness, and visibility. Finally, in combination with the Yutu-2 rover mobility characteristics, a comprehensive cost map for path search was generated.By the end of the first 12 lunar days, the Yutu-2 rover has been working on the lunar farside for more than 300 days, greatly exceeding the projected service life. The rover was able to overcome the complex terrain on the lunar farside, and travelled a total distance of more than 300 m, achieving the "double three hundred" breakthrough. In future manned lunar landing and exploration of Mars by China, computer vision will play an integral role to support science target selection and scientific investigations, and will become an extremely important core technology for various engineering tasks.


2014 ◽  
Vol 47 (1) ◽  
pp. 14-19 ◽  
Author(s):  
M.P. Rijesh ◽  
G. Sijo ◽  
N.K. Philip ◽  
P. Natarajan

2021 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Zongyu Yue ◽  
Ke Shi ◽  
Gregory Michael ◽  
Kaichang Di ◽  
Sheng Gou ◽  
...  

The Chang’e-4 (CE-4) lunar probe, the first soft landing spacecraft on the far side of the Moon, successfully landed in the Von Kármán crater on 3 January 2019. Geological studies of the landing area have been conducted and more intensive studies will be carried out with the in situ measured data. The chronological study of the maria basalt surrounding the CE-4 landing area is significant to the related studies. Currently, the crater size-frequency distribution (CSFD) technique is the most popular method to derive absolute model ages (AMAs) of geological units where no returned sample is available, and it has been widely used in dating maria basalt on the lunar surface. In this research, we first make a mosaic with multi-orbital Chang’e-2 (CE-2) images as a base map. Coupled with the elevation data and FeO content, nine representative areas of basalt units surrounding the CE-4 landing area are outlined and their AMAs are derived. The dating results of the nine basalt units indicate that the basalts erupted from 3.42 to 2.28 Ga ago in this area, a period much longer than derived by previous studies. The derived chronology of the above basalt units establishes a foundation for geological analysis of the returned CE-4 data.


Author(s):  
Liang He ◽  
Qinhu Ren ◽  
Yujian Feng ◽  
Jianhua Zhang ◽  
Sheng Liu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Wei Wei ◽  
Shijie Zhang ◽  
Ximing Zhao ◽  
Xinyu Quan ◽  
Jie Zhou ◽  
...  

To obtain the resources of the moon, humans have launched a series of exploration activities on the moon, and the landing buffer device is an indispensable device on the lander required to perform lunar surface exploration missions. It can effectively protect the lander during landing scientific payloads such as instruments on the lander. Based on the mechanical properties and deformation mechanism of the aluminum honeycomb as buffer material, this paper compares and analyzes different simulation schemes and finally establishes the bonding model of the honeycomb by using the discrete element method; the parameters of the honeycomb material are matched through compression experiments to verify the discrete element honeycomb simulation and the feasibility of the scheme and its parameters. To meet the buffering requirements of large landers, a spider web honeycomb structure is proposed, its modeling method is studied by using the discrete element secondary development program, and the model is compressed as a whole to verify the energy consumption characteristics of the spider web honeycomb structure. Aiming at the honeycomb buffer device during the landing process, the cobweb honeycomb buffer structure and its corresponding landing coupling model were established using the discrete element method, the landing process was simulated and analyzed, and the landing results were predicted to verify the feasibility of the device, providing a reference for the design of the lander and its buffer device.


ACTA IMEKO ◽  
2015 ◽  
Vol 4 (4) ◽  
pp. 16
Author(s):  
Irina A Kislitsyna ◽  
Galina F Malykhina

The aim of the survey is to simulate photon altimeter designed for a soft landing on the lunar surface. Simulation of the process of scattering of gamma rays from the lunar surface with a typical composition of the lunar soil was implemented.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


Sign in / Sign up

Export Citation Format

Share Document